УДК 517.98+512.8

ДИФФЕРЕНЦИРОВАНИЯ И АВТОМОРФИЗМЫ В АЛГЕБРЕ ИЗМЕРИМЫХ КОМПЛЕКСНОЗНАЧНЫХ ФУНКЦИЙ

А. Г. Кусраев

Юрию Федоровичу Коробейнику к его семидесятипятилетию

Устанавливается, что в алгебре (классов эквивалентности) всех комплекснозначных измеримых функций над локально сепарабельным пространством с мерой имеются существенно нетривиальные комплексные дифференцирования и нерасширяющие автоморфизмы, отличные от тождественного.

Настоящая заметка является продолжением работ [1, 2]. В ней устанавливается, что если пространство с мерой локально сепарабельно, то в соответствующей алгебре (классов эквивалентности) всех комплекснозначных измеримых функций имеются существенно нетривиальные дифференцирования и существенно нетривиальные нерасширяющие автоморфизмы. Напомним соответствующие определения.

Как обычно [3, 4], под *пространством с мерой* подразумевается тройка (Ω, Σ, μ) , удовлетворяющая условиям: (a) если $A \subset \Omega$ и $A \cap K \in \Sigma$ для каждого $K \in \Sigma$, удовлетворяющего условию $\mu(K) < +\infty$, то $A \in \Sigma$; (b) если $A \in \Sigma$ и $\mu(A) = +\infty$, то существует $A_0 \in \Sigma$ такой, что $A_0 \subset A$ и $0 < \mu(A_0) < +\infty$; (c) если $A \in \Sigma$, $\mu(A) = 0$ и $A_0 \subset A$, то $A_0 \in \Sigma$.

Положим $\mathcal{N} := \mathcal{N}(\mu) := \{A \in \Sigma : \mu(A) = 0\}$. Фактор-алгебра $\mathbb{B}(\Omega, \Sigma, \mu) := \Sigma/\mathcal{N}$ является σ -алгеброй, которую именуют алгеброй измеримых множеств по модулю множеств меры нуль. Функция $\tilde{\mu} : \mathbb{B} \to \mathbb{R} \cup \{+\infty\}$, определяемая равенством $\mu = \tilde{\mu} \circ \varphi$, где $\varphi : \Sigma \to \mathbb{B}$ — фактор-гомоморфизм, счетно аддитивна, существенно положительна и локально конечна, см. [3, гл. 1, § 6; 4, 2.1.10].

Пару (\mathbb{B}, μ) называют *нормированной булевой алгеброй*, если \mathbb{B} — булева σ -алгебра и μ — конечная строго положительная счетно аддитивная мера на \mathbb{B} . Нормированную булеву алгебру (\mathbb{B}, μ) наделяют метрикой $\rho_{\mu}(x, y) := \mu(x \triangle y)$ и несложно проверить, что метрическое пространство (\mathbb{B}, ρ_{μ}) полно, см. [5].

Говорят, что пространство мерой (Ω, Σ, μ) локально сепарабельно, если Σ содержит семейство $(\Omega_{\xi})_{\xi \in \Xi}$ попарно непересекающихся множеств конечной меры, удовлетворяющих следующим двум требованиям:

(1) для каждого измеримого подмножества $A \in \Sigma$ конечной меры существуют счетное множество индексов $\Theta \subset \Xi$ и множество нулевой меры $A_0 \in \mathcal{N}$ такие, что

$$A = A_0 \cup \left(\bigcup_{\xi \in \Theta} (A \cap \Omega_{\xi})\right);$$

3–46 А. Г. Кусраев

(2) для каждого индекса $\xi \in \Xi$ пространство с мерой $\mathbb{B}_{\xi} := \mathbb{B}(\Omega_{\xi}, \Sigma_{\xi}, \mu_{\xi})$, где $\Sigma_{\xi} := \{A \cap \Omega_{\xi} : A \in \Omega\}$ и μ_{ξ} — ограничение μ на Ω_{ξ} , сепарабельно.

Если выполнено только условие (1), то говорят, что (Ω, Σ, μ) обладает свойством прямой суммы, и в этом случае $\mathbb B$ является полной булевой алгеброй.

Пусть $L^0_{\mathbb{R}} := L^0_{\mathbb{R}}(\Omega, \Sigma, \mu)$ (соответственно, $L^0_{\mathbb{C}} := L^0_{\mathbb{C}}(\Omega, \Sigma, \mu)$) — пространство классов эквивалентности всех измеримых вещественнозначных (комплекснозначных) функций на Ω .

Допустим, что L — алгебра (ниже — одна из алгебр $L^0_{\mathbb{R}}, \, L^0_{\mathbb{C}}, \, L^\infty_{\mathbb{R}}$ и $L^\infty_{\mathbb{C}}$). Линейный оператор $D: L \to L$ называют дифференцированием, если для любых $f,g \in L$ выполнено условие D(fg) = D(f)g + fD(g). Эндоморфизм алгебры — линейный мультипликативный оператор в ней. Биективный эндоморфизм называют автоморфизмом. Подчеркнем, что дифференцирование и автоморфизм в комплексных алгебрах \mathbb{C} -линейны, а в вещественных алгебрах \mathbb{R} -линейны.

Ненулевое дифференцирование, а также отличный от тождественного отображения автоморфизм принято называть нетривиальными. Дифференцирование (авторморфизм) S в L назовем существенно нетривиальным, если для любого порядкового проектора $\pi \in \mathfrak{P}(L)$ из $\pi S = 0$ (соответственно $\pi S = \pi I_L$) следует $\pi = 0$. Основной результат заметки сформулируем в виде следующей теоремы.

Теорема. Пусть (Ω, Σ, μ) — локально сепарабельное пространство с безатомной мерой. Тогда справедливы утверждения:

- (1) в $L^0_{\mathbb{R}}(\Omega, \Sigma, \mu)$ имеются существенно нетривиальные дифференцирования;
- (2) в $L^0_{\mathbb{C}}(\Omega,\Sigma,\mu)$ имеются существенно нетривиальные дифференцирования;
- (3) в $L^0_{\mathbb{R}}(\Omega,\Sigma,\mu)$ имеется единственный нерасширяющий автоморфизм тождественное отображение;
- (4) в $L^0_{\mathbb{C}}(\Omega, \Sigma, \mu)$ имеются существенно нетривиальные нерасширяющие автоморфизмы.

 \lhd Утверждение (3) верно для произвольного пространства с мерой со свойством прямой суммы без предположения локальной сепарабельности. В самом деле, автоморфизм S алгебры L^0 должен быть положительным оператором, так как при $0\leqslant f\in L^0$ выполняется $S(f)=S(\sqrt{f}^2)=(S(\sqrt{f}))^2\geqslant 0.$ Но нерасширяющий положительный оператор имеет вид Sf=gf $(f\in L^0)$ для некоторого $0\leqslant g\in L^0,$ причем $g^2=g$ ввиду мультипликативности S. Тем самым, g — функция, тождественно равная единице и $S=I_{L^0}.$ Оставшаяся часть устанавливается ниже в леммах 1–6. \rhd

Булеву σ -алгебру $\mathbb B$ называют σ - $\partial u cmp u by m u в ной, если для любой двойной последовательности <math>(b_{n,m})_{n,m\in\mathbb N}$ в $\mathbb B$ выполнено условие:

$$\bigvee_{n\in\mathbb{N}} \bigwedge_{m\in\mathbb{N}} b_{n,m} = \bigwedge_{\varphi\in\mathbb{N}^{\mathbb{N}}} \bigvee_{n\in\mathbb{N}} b_{n,\varphi(n)}.$$

Другие эквивалентные определения имеются в [6]. Скажем, что разбиение единицы $B \subset \mathbb{B}$ вписано в разбиение единицы $C \subset \mathbb{B}$, если для каждого $b \in B$ найдется такой $c \in C$, что $b \leqslant c$.

Лемма 1. Полная булева алгебра \mathbb{B} σ -дистрибутивна в том и только в том случае, если в каждую последовательность двухэлементных разбиений единицы в \mathbb{B} можно вписать разбиение единицы.

 \lhd Можно показать (см. [6, п. 19.1], что булева σ -алгебра $\mathbb B$ будет σ -дистрибутивной в том и только в том случае, если для любой последовательности $(b_n)_{n\in\mathbb N}$ в $\mathbb B$ выполнено

условие:

$$\bigvee_{\varepsilon \in \{-1,1\}^{\mathbb{N}}} \bigwedge_{n \in \mathbb{N}} \varepsilon(n) b_n = \mathbb{1},$$

где 1b = b и $(-1)b := b^* := 1 - b$, а $1 := 1_B$ — единица алгебры \mathbb{B} . Но в силу принципа исчерпывания это условие равносильно требуемому, см. также [7]. \triangleright

Лемма 2. Декартово произведение полных булевых алгебр σ -дистрибутивно в том и только в том случае, если каждый сомножитель — σ -дистрибутивная булева алгебра.

⊲ Необходимость очевидна; докажем достаточность. Если В — декартово произведение семейства булевых полных алгебр (\mathbb{B}_{α}) $_{\alpha \in A}$ и $\mathbb{1}_{\alpha}$ — единица алгебры \mathbb{B}_{α} , то можем считать, что \mathbb{B}_{α} служит главным идеалом в \mathbb{B} , порожденным элементом $\mathbb{1}_{\alpha}$. Возьмем произвольную последовательность (b_n) $_{n \in \mathbb{N}}$ в \mathbb{B} и последовательность двухэлементных разбиений единицы ($\{b_n \land \mathbb{1}_{\alpha}, b_n^* \land \mathbb{1}_{\alpha}\}$) $_{n \in \mathbb{N}}$ в \mathbb{B}_{α} . Согласно лемме 1 в \mathbb{B}_{α} существует разбиение единицы (a_{ξ}) $_{\xi \in \Xi(\alpha)}$, вписанное в указанную последовательность двухэлементных разбиений единицы. Если $B := \{a_{\xi} : \xi \in \Xi(\alpha), \alpha \in A\}$, то B — разбиение единицы в \mathbb{B} , вписанное в последовательность двухэлементных разбиений единицы ($\{b_n, b_n^*\}$) $_{n \in \mathbb{N}}$. \triangleright

Лемма 3. Пространство с мерой (Ω, Σ, μ) будет локально сепарабельным в том и только в том случае, если булева алгебра $\mathbb{B}(\Omega, \Sigma, \mu)$ изоморфна декартову произведению сепарабельных нормированных булевых σ -алгебр.

< Следует из определений в силу [4, теорема 1.2.11].
</p>

Лемма 4. Сепарабельная нормированная булева σ -алгебра $\mathbb B$ σ -дистрибутивна в том и только в том случае, если она атомна или, что то же самое, изоморфна булеану $\mathcal P(A)$ для некоторого непустого множества A.

 \lhd Неочевидная часть леммы утверждает, что σ -дистрибутивная сепарабельная нормированная булева алгебра $\mathbb B$ атомна. Докажем это пользуясь леммой 1. Возьмем счетное плотное в $\mathbb B$ множество $B \subset \mathbb B$. В силу леммы 1 существует разбиение единицы $(a_\xi)_{\xi \in \Xi}$ в $\mathbb B$ такое, что для любого $\xi \in \Xi$ существует $b_\xi \in B$, для которого либо $a_\xi \leqslant b_\xi$, либо $a_\xi \leqslant b_\xi^*$. Возьмем теперь произвольный элемент $b \in \mathbb B$ и подберем последовательность $(b_n) \subset B$, сходящуюся по метрике к b. Для фиксированного $\xi \in \Xi$ положим $N_1(\xi) := \{n \in \mathbb N: a_\xi \leqslant b_n\}$ и $N_2(\xi) := \{n \in \mathbb N: a_\xi \leqslant b_n^*\}$. Так как $N_1(\xi) \cup N_2(\xi) = \mathbb N$, то по крайней мере одно из множеств $N_1(\xi)$ и $N_2(\xi)$ бесконечно. Если $N_1(\xi)$ бесконечно, то имеется подпоследовательность (b_{n_k}) , для которой $a_\xi \leqslant b_{n_k}$ ($k \in \mathbb N$). Переход к метрическому пределу с учетом непрерывности решеточных операций в нормированной булевой алгебре дает $a_\xi \leqslant b$. Если же бесконечно множество $N_2(\xi)$, то по аналогичной причине $a_\xi \leqslant b^*$, следовательно, a_ξ — атом алгебры $\mathbb B$. Положим $A := \{a_\xi : \xi \in \Xi\} \setminus \{\mathbb O\}$. Так как A — разбиение единицы, то для любого ненулевого элемента $b \in \mathbb B$ будет

$$\bigvee \{b \land a : a \in A\} = b,$$

следовательно, $b \land a \neq \mathbb{O}$ для некоторого $a \in A$. Отсюда видно, что $a \leqslant b$. Теперь ясно, что булева алгебра \mathbb{B} атомна и изоморфна булеану $\mathcal{P}(A)$. \triangleright

В связи с установленной леммой важно подчеркнуть, что существуют и базатомные σ -дистрибутивные полные булевы алгебры (см. [4, 5.1.8]).

В следующих двух леммах L — расширенное K-пространство (вещественное или комплексное) с фиксированной единицей. Тогда в L имеется единственная мультипликативная структура, превращающая L в f-алгебру, в которой порядковая единица служит кольцевой единицей. Базу L (т. е. булеву алгебру всех порядковых проекторов в L) обозначим символом $\mathfrak{P}(L)$. О комплексификации вещественных K-пространств и соответствующих понятий см. [8].

3–48 А. Г. Кусраев

Лемма 5. Предположим, что для любого ненулевого порядкового проектора $\pi \in \mathfrak{P}(L)$ существует ненулевой порядковый проектор $\rho \in \mathfrak{P}(L)$, $\rho \leqslant \pi$, такой, что в алгебре ρL имеется нетривиальное дифференцирование (нетривиальный нерасширяющий автоморфизм). Тогда в алгебре L имеется существенно нетривиальное дифференцирование (существенно нетривиальный нерасширяющий автоморфизм).

- < Если S нетривиальное дифференцирование в L, то для проектора $\pi_0 := \bigvee \{\pi \in \mathfrak{P}(L) : \pi S = 0\}$ будет $\pi_0 S = 0$ и $\pi_0 \neq I_L$. Тем самым, дифференцирование $\pi_0^* S$ существенно нетривиально в полосе $\pi_0^*(L)$. Отсюда видно, что при соблюдении условий леммы в каждой ненулевой полосе пространства L имеется полоса с существенно нетривиальным дифференцированием. В силу принципа исчерпывания для булевых алгебр существуют разбиение единицы (ρ_ξ) ⊂ $\mathfrak{P}(L)$ и семейство (S_ξ) такие, что $\rho_\xi S_\xi$ существенно нетривиальное дифференцирование в полосе $\rho_\xi(L)$. Оператор $S := o \cdot \sum_{\xi} \rho_\xi S_\xi$ будет искомым существенно нетривиальным дифференцированием в алгебре L. Утверждение относительно автоморфизмов устанавливается теми же рассуждениями. ▷
- **Лемма 6.** Существует порядковый проектор $\pi \in \mathfrak{P}(L)$ такой, что булева алгебра $\mathfrak{P}(\pi L)$ является σ -дистрибутивной и для любого ненулевого проектора $\rho \in \mathfrak{P}(L)$, $\rho \leqslant \pi^*$, в f-алгебре ρL имеется нетривиальное дифференцирование (нетривиальный нерасширяющий автоморфизм).
- \lhd В силу леммы 2 и принципа исчерпывания существует наибольший проектор $\pi \in \mathfrak{P}(L)$, для которого булева алгебра $\mathfrak{P}(\pi L)$ σ -дистрибутивна, в то время как в $\mathfrak{P}(\pi^*L)$ нет σ -дистрибутивных компонент. Тем самым, требуемое вытекает из установленного в [2] факта, что если $\mathfrak{P}(\rho L)$ не является σ -дистрибутивной, то в ρL имеются нетривиальное дифференцирование и нетривиальный нерасширяющий автоморфизм. \triangleright
- Замечания. (1) Понятно, что нетривиальные дифференцирования и автоморфизмы, о которых идет речь в установленной теореме, не могут быть порядково ограниченными, а значит, и регулярными. Следовательно установленный результат дает пример расширенного K-пространства, в котором имеются квалифицированные нерасширяющие нерегулярные операторы дифференцирования и автоморфизмы. Первый пример нерегулярного нерасширяющего линейного оператора в расширенном K-пространстве был построен в [9, 10].
- (2) Задача об описании расширенных пространств Канторовича, в которых всякий нерасширяющий линейный оператор автоматически порядково ограничен, была поставлена в [11] и решена в [7, 12]. Булевозначный подход к этому кругу вопросов см. в [1]. Дальнейшие подробности можно найти в [4, 13].
- (3) Если мера μ атомна, то пространство $L^0 := L^0_{\mathbb{C}}(\Omega, \Sigma, \mu)$ дискретно, стало быть, изоморфно $E := \mathbb{C}^M$ для некоторого непустого множества M. В этом случае нетривиальных дифференцирований и нерасширяющих автоморфизмов в E нет. В то же время в E имеются существенно нетривиальные кольцевые (т. е. не являющиеся \mathbb{C} -однородными) дифференцирования и автоморфизмы. В самом деле, если δ и α соответственно нетривиальные дифференцирование и автоморфизм в \mathbb{C} (см. [14]), то существенно нетривиальные дифференцирование и нерасширяющий автоморфизм E можно определить путем сопоставления комплекснозначной функции $x:M\to\mathbb{C}$ композиций $\delta\circ x$ и $\alpha\circ x$ соответственно.
- (4) Для сравнения с основным результатом отметим, что в пространстве (классов эквивалентности) существенно ограниченных измеримых функций $L^\infty_{\mathbb C}(\Omega,\Sigma,\mu)$ нет нетривиальных дифференцирований и нетривиальных нерасширяющих автоморфизмов.

Литература

- 1. Кусраев А. Г. О нерасширяющих операторах // Владикавк. мат. журн. −2004. —Т. 6, № 3. —С. 48–58.
- 2. *Кусраев А. Г.* Дифференцирования и автоморфизмы в расширенной комплексной алгебре // Сиб. мат. журн.—2005.—Т. 46, № 5.
- 3. Канторович Л. В., Акилов Г. П. Функциональный анализ.—М.: Наука, 1984.-752 с.
- 4. *Кусраев А. Г.* Мажорируемые операторы.—М.: Наука, 2003.—619 с.
- 5. Владимиров Д. А. Булевы алгебры.—М.: Наука, 1969.—318 с.
- 6. Сикорский Р. Булевы алгебры.—М.: Мир, 1969.—375 с.
- 7. Gutman A. E. Disjointness preserving operators // In: Vector Lattices and Integral Operators (Ed. S. S. Kutateladze).—Dordrecht etc.: Kluwer Academic Publishers, 1996.—P. 361–454.
- 8. Schaefer H. H. Banach Lattices and Positive Operators.—Berlin etc.: Springer-Verlag, 1974.—xi+376 p.
- 9. *Абрамович Ю. А., Векслер А. И., Колдунов А. В.* Операторы, сохраняющие дизъюнктность // Докл. АН СССР.—1979.—Т. 248, № 5.—С. 1033—1036.
- 10. Абрамович Ю. А., Векслер А. И., Колдунов А. В. Операторы, сохраняющие дизъюнктность, их непрерывность и мультипликативное представление // В кн: Линейные операторы и их приложения. Межвузовский сборник научных трудов.—Л.: ЛГПИ, 1981.—С. 3–34.
- 11. Wickstead A. W. Representation and duality of multiplication operators on Archimedean Riesz spaces // Compositio Math.—1977.—V. 35, № 3.—P. 225–238.
- 12. Gutman A. E. Locally one-dimensional K-spaces and σ -distributive Boolean algebras // Siberian Adv. Math.—1995.—V. 5, Nº 2.—P. 99–121.
- 13. Кусраев А. Г., Кутателадзе С.С. Нестандартные методы анализа.—Новосибирск: Наука, 1990.— 344 с.
- 14. Aцел Я., Домбр Ж. Функциональные уравнения с несколькими переменными. М.: Физматлит, 2003.—432 с.
- 15. Кусраев А. Г., Кутателадзе С. С. Введение в булевозначный анализ.—М.: Наука, 2005.—525 с.

Статья поступила 30 июня 2005 г.

Кусраев Анатолий Георгиевич, д.ф.-м. н.

г. Владикавказ, Институт прикладной математики

и информатики ВНЦ РАН и РСО-А

E-mail: kusraev@alanianet.ru