УДК 514.7

ПЛОСКОСТЬ ГАЛИЛЕЯ С КОММУТАТИВНОЙ И НЕЛИНЕЙНОЙ ГЕОМЕТРИЕЙ

А. И. Долгарев, И. А. Долгарев

Введено галилеево расстояние между точками на плоскости с нелинейной геометрией. Указана физическая интерпретация такой плоскости. Определена кривизна регулярных кривых и установлено, что функция кривизны однозначно определяет кривую, т. е. рассмотрено задание кривой натуральным уравнением.

Ключевые слова: нелинейная плоскость Галилея.

Арифметическое действительное линейное пространство \mathbb{R}^n определено на кортежах действительных чисел длины $n,\ n\geqslant 2,$ операциями над кортежами, являющимися распространением операций поля \mathbb{R} действительных чисел на кортежи из \mathbb{R}^n . Кортежи из \mathbb{R}^n называются векторами. Если $(x^1,x^2,\ldots,x^n)=\vec{x}$ и $(y^1,y^2,\ldots,y^n)=\vec{y}$ два вектора, то операции над ними задаются равенствами

$$\vec{x} + \vec{y} = (x^1, x^2, \dots, x^n) + (y^1, y^2, \dots, y^n) = (x^1 + y^1, x^2 + y^2, \dots, x^n + y^n); \tag{1}$$

$$t\vec{x} = t(x^1, x^2, \dots, x^n) = (x^1 t, x^2 t, \dots, x^n t), \quad t \in \mathbb{R}.$$
 (2)

Результаты операций в каждой компоненте кортежей являются линейными функциями соответствующих компонент исходных кортежей \vec{x} , \vec{y} . Вектор $u\vec{x} + v\vec{y}$, $u, v \in \mathbb{R}$, имеет компоненты, линейно выражающиеся через компоненты векторов \vec{x} , \vec{y} :

$$u\vec{x} + v\vec{y} = (x^1u + y^1v, x^2u + y^2v, \dots, x^nu + y^nv).$$

Потому операции (1), (2) над векторами называются линейными. Однако операции над векторами-кортежами из \mathbb{R}^n могут быть заданы и нелинейными функциями компонент исходных векторов \vec{x} , \vec{y} . В этом случае обозначаем кортежи чисел другими символами — строчными греческими буквами, чтобы указать на другое задание операций над кортежами, отличное от (1), (2). В [1] рассмотрен случай n=2 и заданы следующие операции на \mathbb{R}^2 .

$$\tau + \sigma = (x, y) + (u, v) = (x + u, y + v + xu). \tag{3}$$

$$t\tau = t(x,y) = \left(xt, yt + x^2 \frac{t(t-1)}{2}\right), \quad t \in \mathbb{R},\tag{4}$$

здесь $\tau = (x, y), \, \sigma = (u, v).$

^{© 2010} Долгарев А. И., Долгарев И. А.

Результаты операций во второй компоненте суммы $\tau + \sigma$ и произведения $t\tau$ нелинейны. Проверка показывает, что векторы с операциями (3) и (4) удовлетворяют всем аксиомам линейного пространства над полем \mathbb{R} . (Проверка выполнена в [1].) Мы имеем 2-мерное альтернативное линейное пространство ${}^a\mathbf{L}^2$ над \mathbb{R} с нелинейно заданными операциями (3) и (4) над векторами. Далее рассматриваем альтернативное линейное пространство ${}^a\mathbf{L}^2$ над \mathbb{R} и альтернативную аффинную плоскость ${}^a\mathbf{A}^2$ с линейным пространством ${}^a\mathbf{L}^2$, построенную в аксиоматике Γ . Вейля. Подробное построение плоскости ${}^a\mathbf{A}^2$ проведено в [2].

Ниже на альтернативной аффинной плоскости ${}^{a}\mathbf{A}^{2}$ строится плоскость Галилея с галилеевым векторным пространством ${}^{a}\mathbf{V}_{\Gamma}^{2}$, которое определено на альтернативном линейном пространстве ${}^{a}\mathbf{L}^{2}$ с операциями (3) и (4). Изучаются кривые альтернативной плоскости Галилея. С этой целью определено галилеево скалярное произведение векторов в альтернативном линейном пространстве ${}^{a}\mathbf{L}^{2}$, тем самым получено альтернативное галилеево векторное пространство и альтернативная аффинная плоскость превращена в плоскость Галилея ${}^a\Gamma^2$, имеющую нелинейную геометрию. Евклидовы прямые этой плоскости описываются линейными уравнениями, а галилеевы прямые описываются уравнениями второго порядка и являются параболами (галилеевыми циклами). Геометрии полученной плоскости дается гравитационная интерпретация. Под прямыми этой плоскости можно понимать траектории движения материальных точек в гравитационном поле — например, в поле притяжения Земли. Материальная точка в свободном падении движется по вертикальной траектории, что соответствует евклидовой прямой нелинейной плоскости Галилея ${}^{a}\Gamma^{2}$. Материальная точка, начавшая двигаться под углом к горизонтальной плоскости в результате мгновенно действующей силы, движется по параболической траектории. Эти траектории соответствуют галилеевым прямым плоскости.

Введено дифференцирование векторных функций со значениями в $^aV_{\Gamma}^2$. Правила дифференцирования оказались обычными для векторных функций. Определены регулярные кривые нелинейной плоскости Галилея; изучаются кривые, отличные от евклидовых прямых, имеющие галилеевы касательные векторы. Определена кривизна кривой, получен аналог формул Френе. Установлено, что функция кривизны однозначно определяет кривую плоскости $^a\Gamma^2$. Найдены кривые постоянной кривизны — ими оказались галилеевы циклы.

1. Галилеево векторное пространство

1.1. Галилеева норма векторов. Определим галилеево скалярное произведение векторов на альтернативном линейном пространстве ${}^a\mathbf{L}^2$, превращая его в альтернативное галилеево векторное пространство ${}^a\mathbf{V}^2_{\Gamma}$. Галилеевым скалярным произведением векторов $\tau = (x,y)$ и $\sigma = (u,v)$ называется число $\tau\sigma$, определяемое условиями:

$$au\sigma=xu, \quad ext{ecли} \quad x
eq 0$$
 или $u
eq 0;$ $au\sigma=yv, \quad ext{ecли} \quad x=u=0.$

Если рассматриваются одинаковые векторы τ и τ , то их скалярное произведение называется скалярным квадратом вектора τ :

$$\tau \tau = \tau^2$$
.

В этом случае имеем:

$$au^2 = x^2, \quad \text{если } x \neq 0;$$
 $au^2 = y^2, \quad \text{если } x = 0.$

 Γ алилеевой нормой $|\tau|$ вектора τ называется корень квадратный из его скалярного квадрата, таким образом:

$$|\tau| = \begin{cases} |x|, & x \neq 0; \\ |y|, & x = 0. \end{cases}$$
 (5)

Согласно [3], галилеева норма векторов относится к квазинормам вместе с полуевклидовой, флаговой и другими нормами. Определение галилеевой нормы векторов дано в [4].

Компонента x вектора $\tau=(x,y)$ называется временной (времениподобной), компонента y вектора $\tau=(x,y)$ называется пространственной (пространственноподобной). Как указано выше, альтернативное линейное пространство ${}^a\mathbf{L}^2$ с галилеевым скалярным произведением векторов называется векторным галилеевым векторным пространством или нелинейным галилеевым векторным пространством и обозначается ${}^a\mathbf{V}_{\Gamma}^2$. Векторы $\chi=(0,y)$ называются евклидовыми, векторы $\tau=(x,y), x\neq 0$, называются галилеевыми. Существует два евклидовых вектора $\chi=(0,y)$ и $\chi=(0,y)$, имеющих норму $\chi=(0,y)$ и бесконечно много галилеевых векторов $\chi=(0,y)$ с нормой $\chi=(0,y)$, имеющих норму $\chi=(0,y)$ и бесконечно много галилеевых векторов $\chi=(0,y)$ с нормой $\chi=(0,y)$ и обозначается галилеевых векторов χ

Все евклидовы векторы задают в ${}^a\mathbf{V}_{\Gamma}^2$ пространственное направление, оно единственное. Можно говорить о положительности или отрицательности пространственного направления. Положительное пространственное направление определяется векторами $\chi=(0,y)$ с y>0. Все галилеевы векторы задают в ${}^a\mathbf{V}_{\Gamma}^2$ временное направление, оно тоже единственное. Положительное временное направление задают галилеевы векторы $\tau=(x,y)$ с x>0.

Пространственная составляющая векторного пространства ${}^a\mathbf{V}^2_{\Gamma}$ и временная составляющая пространства ${}^a\mathbf{V}^2_{\Gamma}$ одномерны.

Евклидовы векторы составляют в ${}^a\mathbf{V}_{\Gamma}^2$ 1-мерное евклидово векторное пространство ${}^a\mathbf{V}_{E}^1$. Действительно, согласно (3) и (4):

$$(0,y) + (0,v) = (0,y+v); \quad t(0,y) = (0,yt).$$

Галилеевы векторы не составляют алгебраической структуры, множество галилеевых векторов не замкнуто относительно операций над векторами. По (3) и (4) имеем:

$$(x,0) + (u,0) = (x+u,xu); \quad t(x,0) = \left(xt, x^2 \frac{(t-1)t}{2}\right).$$

Относительно внутренней операции (3) векторы из ${}^a\mathbf{L}^2$ составляют абелеву группу. Элементы τ , σ группы порождают в группе подгруппу $\langle \tau, \sigma \rangle$, состоящую из всевозможных комбинаций $t\tau + s\sigma$, $t,s \in \mathbb{R}$. Пусть $\alpha = (1,0)$, $\beta = (0,1)$. В [1] установлено, что $\langle \alpha, \beta \rangle = {}^a\mathbf{L}^2$, т. е. всякий вектор является некоторой комбинацией векторов α , β :

$$\tau = (x, y) = x\alpha + \left(y - \frac{(x-1)x}{2}\right)\beta,$$

что означает, что ${\bf B}=(\alpha,\beta)$ является базисом линейного пространства ${}^a{\bf L}^2$ и пространства ${}^a{\bf V}^2_\Gamma$ тоже.

Два вектора τ и σ называются nesaeucumыmu, если ни один из них не является кратным другого, т. е. не существует $t \in \mathbb{R}$ такого, что $\tau = t\sigma$ или $\sigma = t\tau$, или иначе $\tau \notin \langle \sigma \rangle$. Справедливо следующее утверждение.

Лемма 1. Существует два независимых галилеевых вектора, порождающих галилеево векторное пространство ${}^aV^2_{\Gamma}$.

⊲ Рассмотрим векторы

$$2\alpha = 2(1,0) = (2,1), \quad \gamma = (-2,0).$$

Их сумма $2\alpha + \gamma$ есть евклидов вектор

$$2\alpha + \gamma = (2,1) + (-2,0) = (0,-3) = 3\beta,$$

см. (3). Всякий ненулевой евклидов вектор порождает 1-мерное евклидово подпространство в ${}^a\mathbf{V}_{\Gamma}^2$, оно единственно. Теперь, рассматривая всевозможные комбинации векторов α и γ , получаем все векторы из ${}^a\mathbf{V}_{\Gamma}^2$. \triangleright

На основании доказанной леммы 1, справедлива

Теорема 1. Галилеево векторное пространство ${}^aV_\Gamma^2$ порождается временными векторами.

Векторы τ и σ называются *перпендикулярными*, если их скалярное произведение равно нулю. Обозначение перпендикулярных векторов: $\tau \perp \sigma$. Если τ — галилеев вектор, σ — евклидов вектор, то по определению скалярного произведения векторов $\tau \sigma = 0$. Это означает, что всякий галилеев вектор перпендикулярен всякому евклидову вектору.

Вектор τ называется *изотропным*, если $\tau \neq \vartheta$ и $\tau^2 = 0$. Нулевым является вектор $\vartheta = (0,0)$.

Лемма 2. Галилеево векторное пространство ${}^a\mathbf{V}_{\Gamma}^2$ не содержит изотропных векторов. \lhd Если вектор $\tau=(x,y)$ галилеев, т. е. $x\neq 0$, то $\tau^2=x^2\neq 0$. Если вектор τ евклидов, то $\tau=(0,y)$. Тогда $\tau^2=y^2$. Имеем $\tau^2=0$, только при y=0. Поэтому $\tau^2=0$, если и только если $\tau=\vartheta$. \rhd

1.2. Дифференцирование векторных функций. В отображении числового интервала **I**, содержащегося в \mathbb{R} , в векторное пространство ${}^a\mathbf{V}_{\Gamma}^2$, числу t соответствует вектор $\gamma(t)=(x(t),y(t))$. Значение t называется параметром вектора $\gamma(t)$. Если t пробегает интервал **I**, то имеется векторная функция

$$\gamma(t) = (x(t), y(t)), \quad t \in \mathbf{I}. \tag{6}$$

Изменяющемуся параметру t из \mathbf{I} соответствует изменяющийся вектор $\gamma(t)$. Считаем, что рассматриваемое отображение принадлежит классу C^k , $k\geqslant 1$, т. е. оно взаимно однозначно, взаимно непрерывно и дифференцируемо k раз: это равносильно тому, что и функции x(t), y(t) дифференцируемы k раз. Векторная функция, определенная на интервале \mathbf{I} , может иметь несколько параметризаций, т. е. параметр t вектора $\gamma(t)$ может в интервале \mathbf{I} изменяться по разным законам. В (6) считается, что параметр t изменяется произвольно.

Пусть параметр t изменился на величину Δt . Значению $t+\Delta t$ соответствует значение функции: $\gamma(t+\Delta t)=(x(t+\Delta t),y(t+\Delta t))$. Приращение функции $\Delta \gamma$ равно разности значений функции

$$\Delta \gamma = \gamma(t + \Delta t) - \gamma(t).$$

 Π роизводной функцией векторной функции $\gamma(t)$ называется предел

$$\lim_{\Delta t \to 0} \frac{\Delta \gamma}{\Delta t} = \gamma'(t),$$

если он существует при условии, что $\Delta \gamma \to 0$ при $\Delta t \to 0$.

Теорема 2. Вектор производной $\gamma'(t)$ векторной функции (6) класса C^1 вычисляется по формуле

$$\gamma'(t) = \left(x'(t), y'(t) + x'(t) \left(\frac{1}{2}x'(t) - x(t)\right)\right). \tag{7}$$

 \triangleleft Вектор $-\tau$, противоположный вектору $\tau = (x, y)$, равен:

$$-\tau = -(x, y) = (-x, -y + x^2),$$

см. [1]. Вычислим вектор $\Delta \gamma$, используя (3).

$$\Delta \gamma = \gamma(t + \Delta t) - \gamma(t) = \left(x(t + \Delta t), y(t + \Delta t) \right) + \left(-x(t), -y(t) + x^2(t) \right)$$
$$= \left(x(t + \Delta t) - x(t), y(t + \Delta t) - y(t) + x^2(t) - x(t + \Delta t)x(t) \right).$$

Очевидно, что если $\Delta t \to 0$, то и $\Delta \gamma \to 0$. По (4) находим произведение вектора $\Delta \gamma$ на число $\frac{1}{\Delta t}$. Используем обозначения $\Delta x = x(t+\Delta t) - x(t), \ \Delta y = y(t+\Delta t) - y(t)$:

$$\frac{1}{\Delta t} \Delta \gamma = \left(\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t} - x(t) \frac{\Delta x}{\Delta t} + \frac{1}{2} \Delta x^2 \frac{1}{\Delta t} \left(\frac{1}{\Delta t} - 1\right)\right).$$

Здесь $\Delta x^2 \frac{1}{\Delta t} \left(\frac{1}{\Delta t} - 1 \right) = \frac{\Delta x}{\Delta t} \left(\frac{\Delta x}{\Delta t} - \Delta x \right)$, при $\Delta t \to 0$ и $\Delta x \to 0$. Теперь находим

$$\gamma'(t) = \lim_{\Delta t \to 0} \frac{\Delta \gamma}{\Delta t} = \left(x'(t), y'(t) - x'(t)x(t) + \frac{1}{2} \left(x'(t) \right)^2 \right).$$

Отсюда получается формула (7). Предел галилеевой векторной функции вычисляется покомпонентно. ⊳

Установим некоторые свойства дифференцирования векторных функций со значениями в галилеевом векторном пространстве ${}^{a}\mathbf{V}_{\Gamma}^{2}$.

Свойство 1. $(\gamma(t) + \delta(t))' = \gamma'(t) + \delta'(t)$.

 \lhd Если $\delta(t) = (u(t), v(t))$, то по (7), имеем $\delta'(t) = (u'(t), v'(t)) + u'(t) \left(\frac{1}{2}u'(t) - u(t)\right)$, и, по (3), используя сокращенную запись вида x'(t) = x', находим:

$$\gamma' + \delta' = \left(x' + u', y' + v' + x' \left(\frac{1}{2}x' - x\right) + u' \left(\frac{1}{2}u' - u\right) + x'u'\right)$$

$$= \left(x' + u', y' + v' + \frac{1}{2}x'x' - x'x + \frac{1}{2}u'u' - u'u + x'u'\right).$$
(8)

Теперь находим сумму $(\gamma(t) + \delta(t))$ по (3), а затем производную этой суммы по формуле (7).

$$\gamma + \delta = (x + u, y + v + xu);
(\gamma + \delta)' = \left(x' + u', y' + v' + (x' + u')\left(\frac{1}{2}x' + \frac{1}{2}u' - x - u\right) + x'u + xu'\right)
= \left(x' + u', y' + v' + \frac{1}{2}x'x' - x'x + \frac{1}{2}u'u' - u'u + x'u'\right).$$
(9)

Результаты (8) и (9) операций, выполненных над функциями γ и δ , совпадают, что и доказывает свойство. \triangleright

Свойство 2. $(C\gamma(t))' = C\gamma'(t)$, где C — постоянный множитель.

Свойство 3. Если компоненты вектора γ являются сложными функциями: x(u(t)), y(u(t)), то

$$\gamma_t'(u(t)) = u_t' \gamma_u'.$$

 \triangleleft Находим производную функции $\gamma(u(t))$ по формуле (7):

$$\gamma'(u(t)) = \left(x'_u u'_t, y'_u u'_t + x'_u u'_t \left(\frac{1}{2} x'_u u'_t - x\right)\right) = \left(x'_u u'_t, y'_u u'_t + \frac{1}{2} x'_u x'_u u'_t u'_t - x'_u u'_t x\right).$$

Вычислим по формуле (4) произведение:

$$\begin{aligned} u_t'\gamma'(u) &= u_t'\left(x_u', y_u' + x_u'\left(\frac{1}{2}x_u' - x\right)\right) = \left(x_u'u_t', y_u'u_t' + x_u'u_t'\left(\frac{1}{2}x_u' - x\right)\right) \\ &+ x_u'x_u'\frac{1}{2}(u_t' - 1)u_t'\right) = \left(x_u'u_t', y_u'u_t' + \frac{1}{2}x_u'x_u'u_t'u_t' - x_u'u_t'x\right). \end{aligned}$$

Результаты совпадают. ⊳

Свойство 4. Если $\sigma = \text{const}$, то $(t\sigma)' = \sigma$.

$$\lhd$$
 Пусть $\sigma=(a,b).$ По формуле (4), $t\sigma=\left(at,bt+\frac{1}{2}a^2(t-1)t\right).$ По формуле (7): $(t\sigma)'=\left(a,b+a^2t-\frac{1}{2}a+a\left(\frac{1}{2}a-atg\right)\right)=(a,b).$ \rhd

Доказанные свойства повторяют известные свойства дифференцирования векторных функций со значениями в векторном пространстве с операциями (1) и (2) — операциями, заданными линейными функциями в компонентах векторов.

Как следствие теоремы 2, укажем частные случаи производных векторных функций.

Свойство 5. Если одна из компонент векторной функции $\gamma(t)$ постоянна, то формула (7) принимает вид:

$$(C, y(t))' = (0, y'(t)); \tag{10}$$

$$(x(t), C)' = \left(x'(t), x'(t)\left(\frac{1}{2}x'(t) - x(t)\right)\right). \tag{11}$$

Если первая компонента векторной функции $\gamma(t)$ есть время x(t) = t, то производная второго порядка галилеевой функции является евклидовой (пространственной) функцией:

$$(t, y(t))' = (1, y'(t) + \frac{1}{2} - t), \quad (t, y(t))'' = (0, y''(t) - 1).$$
 (12)

2. Нелинейный аналог плоскости Галилея

2.1. Плоскость с Галилеевой метрикой. Альтернативная аффинная плоскость ${}^a\mathbf{A}^2$ с линейным пространством ${}^a\mathbf{L}^2$ введена в [2]. Определяя в линейном пространстве ${}^a\mathbf{L}^2$ галилееву норму векторов, превращаем аффинную плоскость ${}^a\mathbf{A}^2$ в плоскость Галилея с соответствующим расстоянием между точками. Эта плоскость отлична от классической плоскости Галилея, так как ее векторное пространство ${}^a\mathbf{V}_{\Gamma}^2$ отлично от векторного пространства классической плоскости.

Базис $\mathbf{B}=(\alpha,\beta)$ линейного пространства ${}^a\mathbf{L}^2$ и точка O аффинной плоскости ${}^a\mathbf{A}^2$ определяют репер $\mathbf{B}=(O,\alpha,\beta)$ аффинной плоскости ${}^a\mathbf{A}^2$. Точка M плоскости имеет

координаты (x,y) в репере **B**, если вектор \overrightarrow{OM} имеет эти координаты в базисе **B** [2]. Если A=(a,h) и B=(b,g) — точки аффинной плоскости ${}^a\mathbf{A}^2$, то координаты вектора \overrightarrow{AB} таковы [2]:

$$\overrightarrow{AB} = (b - a, g - h - a(b - a)).$$

Расстояние |AB| между точками A и B равно норме вектора \overrightarrow{AB} . Согласно (5) из п. 1.1,

$$|AB| = \begin{cases} |b-a|, & b \neq a; \\ |g-h|, & b = a. \end{cases}$$

$$(13)$$

Расстояние между точками определяется точно также, как в классической плоскости Галилея [4].

Плоскость, в линейном пространстве ${}^a\mathbf{L}^2$, в которой введена галилеева норма (5) из п. 1.1, а значит, и расстояние (13) между точками, называется нелинейным аналогом плоскости Галилея и обозначается ${}^a\Gamma^2$, ее векторным пространством является ${}^a\mathbf{V}_{\Gamma}^2$. Будем говорить, что ${}^a\Gamma^2$ — нелинейная плоскость Галилея. Классическая плоскость Галилея изучается в работах Н. М. Макаровой, см. [5]. Популярное изложение планиметрии Галилея дано в [6]. Геометрия Галилея 3-мерного пространства изложена в [4] и в [7], где также строятся некоммутативные галилеевы геометрии. В [8] приведено определение классического n-мерного пространства Галилея. В работе [9] доказана основная теорема теории поверхностей 3-мерного пространства Галилея — аналог теоремы О. Бонне евклидовой геометрии, см. также [10].

Координата x точки M(x,y) называется временной, координата y точки M называется пространственной; плоскость ${}^a\Gamma^2$ называется нелинейным 2-мерным пространством-временем Галилея. Точка M называется еще событием плоскости Галилея ${}^a\Gamma^2$. События A и B называются одновременными, если b=a. Множество всех событий, у которых время фиксировано, называется множеством одновременных событий плоскости ${}^a\Gamma^2$, это множество является прямой линией. Она задается точкой A=(a,h) и евклидовым вектором $\mu=(0,p)$, согласно [2], уравнение указанной прямой имеет вид

$$x = a. (14)$$

Это евклидова прямая плоскости Галилея ${}^a\Gamma^2$. Через всякую точку плоскости ${}^a\Gamma^2$ проходит единственная евклидова прямая.

Всякая прямая l плоскости ${}^a\mathbf{A}^2$ порождается точкой и ненулевым вектором (обозначение $l = \langle A, \mu \rangle$). Пусть $A = (a, h), \ \mu = (m, p)$. Тогда уравнение прямой [2] имеет вид

$$\begin{cases} x = mt + a, \\ y = (am + p)t + m^2 \frac{(t-1)t}{2} + h. \end{cases}$$
 (15)

Эти уравнения нелинейны при $m \neq 0$, т. е. когда μ — галилеев вектор. Прямая с евклидовым вектором описывается линейным уравнением (14). Прямая (15) является галилеевым циклом; галилеевы циклы описаны в [6].

Пространственное направление на плоскости Галилея $^a\Gamma^2$ единственно, как и на классической плоскости Галилея, оно задается любым евклидовым вектором $t\beta=(0,t)$. Время в плоскости Галилея 1-мерно. Поэтому разные галилеевы векторы задают одно и то же временное направление. Временное направление есть полуплоскость с евклидовой границей. Положительное направление задается галилеевыми векторами (a,b), где a>0. О направлениях в галилеевом векторном пространстве см. п. 1.1.

2.2. Регулярные кривые плоскости Галилея. Отображение γ интервала \mathbf{I} , принадлежащего числовой прямой $\mathbb R$ в плоскость Галилея ${}^a\Gamma^2$, называется кривой плоскости ${}^a\Gamma^2$. Пусть $t\in \mathbf{I}, \, \gamma(t)=M\in {}^a\Gamma^2$, в ${}^a\Gamma^2$ выбран репер $\mathbf{B}=(O,\alpha,\beta)$ и M=(x,y) в репере \mathbf{B} . Тогда M=M(t)=(x(t),y(t)). С изменением значения t в интервале \mathbf{I} изменяется образ M значения t — точки M(t) в плоскости ${}^a\Gamma^2$. Множество точек

$$\{M(x(t), y(t)), t \in \mathbf{I}\}\tag{16}$$

также называется кривой $\gamma(t)$ в $^a\Gamma^2$. Кривая в $^a\Gamma^2$ описывается вектроной функцией (6):

$$\gamma(t) = (x(t), y(t)), \quad t \in \mathbf{I}. \tag{17}$$

Считаем, что отображение γ гомеоморфно и имеет класс C^2 , т. е. не менее двух раз дифференцируемо и $\gamma'(t) \neq \vartheta$. Кривая (17) с такими свойствами называется регулярной класса C^2 . Каждая точка кривой (17) называется обыкновенной. Выбор функции, описывающей множество точек (16), называется параметризацией кривой (17).

В каждой точке M кривой $\gamma(t)$ существует вектор производной $\gamma'(t)$. Тем самым вдоль кривой $\gamma(t)$ задано касательное отображение в галилеево векторное пространство ${}^a\mathbf{V}_{\Gamma}^2$, которое точку M(t) кривой $\gamma(t)$ отображает на вектор $\gamma'(t)$. Согласно (7) в п. 1.2, $\gamma'(t) = (x'(t), y'(t) + x'(t) \left(\frac{1}{2}x'(t) - x(t)\right))$. Пусть $P = P(t_0)$ — точка кривой $\gamma(t)$. Прямая $l = \langle P, \gamma'(t_0) \rangle$ называется касательной к кривой $\gamma(t)$ в точке $t = t_0$. Если $x'(t_0) \neq 0$, то вектор касательной является галилеевым. Уравнение галилеевой касательной к кривой (17), согласно (15), имеет вид

$$\begin{cases} x = x'_0 t + x_0, \\ y = (x'_0 x_0 + y'_0 + x'_0 (\frac{1}{2} x'_0 - x_0)) t + x'_0 x'_0 \frac{(t-1)t}{2} + y_0; \end{cases}$$

здесь $x_0 = x(t_0)$, $x_0' = x'(t_0)$, $y_0 = y(t_0)$, $y_0' = y'(t_0)$. Через точку P проходит единственная евклидова прямая, она является нормалью кривой $\gamma(t)$ в точке P и описывается уравнением $x = x_0$, см. (14) в п. 2.1.

Если $x_0'=0$, то вектор касательной есть $\gamma'(t_0)=(0,y_0')$ — евклидов вектор. Уравнение касательной

$$x = x(t_0).$$

Вектором нормали в этом случае является любой галилеев вектор, см. п. 1.1, считаем, что это вектор $\alpha = (1,0)$. Уравнение нормали, по (15), есть

$$\begin{cases} x = t + x_0, \\ y = x'_0 t + \frac{(t-1)t}{2} + y_0. \end{cases}$$

Параметризация кривой $\gamma(t)$ — это способ изменения параметра t на интервале ${\bf I}$, на котором кривая задана.

Теорема 4. Положение касательной к кривой не зависит от параметризации кривой.

 \lhd Пусть параметры t, s пробегают интервал **I** и t=t(s). Тогда кривая задается в параметризации $\gamma(t(s))$. По свойству 3 п. 1.2, $\gamma_s'=t_s'\gamma_t'$ и касательная в точке P задается вектором γ_t' или вектором $t_s'\gamma_t'$, которые коллинеарны, а значит, определяют одну и ту же прямую. \triangleright

2.3. Естественная параметризация кривой. Если кривая $\gamma(t)$ нелинейной плоскости Галилея ${}^a\Gamma^2$ имеет только евклидовы касательные векторы, то это евклидова прямая плоскости x=a. Рассматриваем только кривые $\gamma(t)$, которые в окрестности точки P имеют галилеевы касательные векторы. Считаем, что указанная окрестность есть интервал **I**. Так как $\gamma(t)$ — кривая класса C^2 , то функция x(t) обратима на **I** и существует обратная функция t=t(x); значит, кривая задается в параметризации

$$\gamma(x) = (x, y(t(x)) = (x, y(x)), \quad x \in \mathbf{I}.$$

Первая компонента вектора $\gamma(x)$ является временной, поэтому в $\gamma(x)$ смысл параметра x есть время, обозначаем его символом t и перепишем задание кривой в виде

$$\gamma(t) = (t, x(t)), \quad t \in \mathbf{I}. \tag{18}$$

Вектор производной в этом случае, согласно (12) и свойства 5 из п. 1.2, таков:

$$\dot{\gamma} = (1, \dot{x} + \frac{1}{2} - t), \quad t \in \mathbf{I}.$$
 (19)

Производная обозначена точкой над функцией. По определению (5) из п. 1.1, норма вектора касательной равна

$$|\dot{\gamma}| = 1$$

— это единичный вектор касательной.

Лемма 3. Длина дуги кривой (18) от точки $\gamma(t_0) = (t_0, x(t_0))$ до точки $\gamma(t)$, параметр t возрастает, равна $t - t_0$.

 \lhd Действительно, вычисляя вектор $\gamma(t)-\gamma(t_0)$ и находя его длину согласно (5), получаем $|\gamma(t)-\gamma(t_0)|=t-t_0.$ \rhd

Таким образом, параметризация (18) кривой $\gamma(t)$ является естественной, естественным параметром является время. Обозначим

$$\dot{\gamma} = \tau$$
.

Как уже отмечалось, единичный вектор нормали кривой есть вектор β . При движении точки P по кривой (18) имеем сопровождающий репер кривой

$$\mathbf{B}_P = (P, \tau, \beta).$$

2.4. Кривизна кривой. Производная единичного вектора касательной τ кривой $\gamma(t)$ в естественной параметризации (18) равна (см. свойство 5 и формулу (10) в п. 1.2)

$$\dot{\tau} = \ddot{\gamma} = (0, \ddot{x} - 1).$$

Пространственный, т. е. евклидов вектор $\ddot{\gamma}$ производной второго порядка функции (18) коллинеарен единичному вектору $\beta = (0,1)$:

$$\dot{\tau} = \ddot{\gamma} = (\ddot{x} - 1)(0, 1),\tag{20}$$

см. операцию (4) умножения векторов из ${}^{a}\mathbf{V}_{\Gamma}^{2}$ на число. Обозначим

$$\ddot{x} - 1 = k(t). \tag{21}$$

Функция k(t) называется функцией кривизны кривой $\gamma(t)$ в естественной параметризации (18), величина

$$k = |\ddot{\gamma}| \tag{22}$$

называется $\kappa puвизной$ кривой $\gamma(t)$, как модуль вектора производной второго порядка функции $\gamma(t)$, задающей кривую в естественной параметризации. Кривизна кривой $\gamma(t)$ в точке P равна

$$k = |\ddot{\gamma}(t_0)|.$$

Вместе с тем, получен аналог формулы Френе для кривых плоскости Галилея ${}^a\Gamma^2$:

$$\dot{\tau} = k\beta. \tag{23}$$

Вектор β сопровождающего репера $\mathbf{B}_P = (P, \tau, \beta)$ кривой (18) является постоянным, поэтому

$$\dot{\beta} = \vartheta$$
.

2.5. Прямые и циклы. Прямая плоскости ${}^a\Gamma^2$ может быть задана точкой и единичным вектором. Имеется единственный единичный евклидов вектор $\beta=(0,1)$. Всякий единичный галилеев вектор есть $\mu=(1,p)$. Галилеева прямая, проходящая через точку A(a,h), согласно (15), описывается уравнениями

$$\begin{cases} x = t + a, \\ y = \frac{1}{2}t^2 + \left(a + p - \frac{1}{2}\right)t + h. \end{cases}$$

Коэффициент при t^2 равен $\frac{1}{2}$. Галилеева прямая задается следующей векторной функцией в естественной параметризации

$$\gamma(t) = \left(t, \frac{1}{2}t^2 + \left(p - \frac{1}{2}\right)t + h\right),$$
(24)

Согласно [6, с. 85], линия плоскости Галилея, определяемая вектором

$$\gamma(t) = (t, at^2 + bt + c), \quad a \neq 0,$$
 (25)

называется *галилеевым циклом*. Прямая (24) является циклом при $a=\frac{1}{2}$. Никакой другой цикл галилеевой плоскости прямой линией не является.

Для прямой (24) имеем, что $\ddot{x} = 1$. По (21), кривизна прямой (24) равна

$$k = \ddot{x} - 1 = 0,$$

что естественно для прямой. Для цикла (25) имеем, что $\ddot{x}=2a$, поэтому кривизна цикла равна

$$k = 2a - 1.$$

При $a=\frac{1}{2}$ кривизна цикла равна нулю, в этом случае, как уже отмечено, цикл является прямой линией плоскости Галилея $^a\Gamma^2$. Цикл есть линия постоянной кривизны.

2.6. Отыскание кривой по заданной функции кривизны. Для кривых плоскости Галилея с нелинейной геометрией выполняется основная теорема теории кривых.

Теорема 5. Существует единственная, с точностью до положения на плоскости, кривая, имеющая заданную функцию кривизны.

Это означает, что кривая плоскости Галилея ${}^a\Gamma^2$ определяется натуральным уравнением k=k(t).

 \lhd Пусть кривая $\gamma(t)=(t,x(t))$ на интервале **I** имеет функцию кривизны k(t)=k. Неизвестную функцию x=x(t) и заданную функцию k(t)=k связывает дифференциальное уравнение второго порядка (21):

$$\ddot{x} = k(t) + 1.$$

Общее решение этого уравнения есть

$$x = \int \left(\int k(t) dt \right) dt + \frac{1}{2}t^2 + C_1t + C_2,$$

где C_1, C_2 — постоянные интегрирования. Начальные условия:

$$t = t_0, \quad x(t_0) = x_0, \quad \dot{x}(t_0) = \dot{x}_0$$

определяют единственную функцию x=x(t). Кривая $\gamma(t)=(t,x(t))$ проходит через заданную точку (t_0,x_0) плоскости и имеет в этой точке касательную прямую, задаваемую вектором $\dot{\gamma}(t_0)=(1,\dot{x}_0)$. Кривая $\gamma(t)$ указанными условиями определяется однозначно. \triangleright

Кривая постоянной кривизны k такова:

$$\gamma(t) = \left(t, \frac{k+1}{2}t^2 + C_1t + C_2\right).$$

При $k \neq 0$ полученная кривая является галилеевым циклом. Таким образом, всякая кривая постоянной кривизны плоскости ${}^a\Gamma^2$ является галилеевым циклом. При k=0 это прямая

$$\gamma(t) = \left(t, \frac{1}{2}t^2 + C_1t + C_2\right).$$

Прямую $\gamma(t) = \left(t, \frac{1}{2}t^2\right)$, определяют начальные условия: t = 0, x(0) = 0, $\dot{x}(0) = 0$. Она проходит через начало координат (0,0) в направлении галилеева вектора $\alpha = (1,0)$.

Литература

- 1. Долгарев А. И., Долгарев И. А. Альтернативное 2-мерное действительное линейное пространство. Группа Ли замен базисов пространства // Владикавк. мат. журн.—2008.—Т. 10, вып. 2.—С. 9–20.
- 2. Долгарев А. И., Долгарев И. А. Альтернативная аффинная плоскость // Владикавк. мат. журн.— 2007.—Т. 9, вып. 4.—С. 4–14.
- 3. Розефельд Б. А., Замаховский М. П. Геометрия групп Ли. Симметрические, параболические и периодические пространства.—М.: МЦНМО, 2003.—560 с.
- 4. Долгарев А. И. Классические методы в дифференциальной геометрии одулярных пространств.— Пенза: ИИЦ ПГУ, 2005.—306 с.
- 5. *Макарова Н. М.* Двумерная неевклидова геометрия с параболической метрикой длин и углов: Дис. . . . канд. физ.-мат. наук.—Л., 1962.—98 с.
- 6. Яглом И. М. Принцип относительности Галилея и неевклидова геометрия.—М.: Наука, 1969.— 309 с.
- 7. Долгарев А. И. Элементы дифференциальной галилеевой геометрии и одуль галилеевых преобразований.—Саранск: Средневолжское мат. общество, 2003.—116 с.
- 8. Арнольд В. И. Математические методы классической механики.—М.: Наука, 1989.—472 с.
- 9. Долгарев И. А. Системы дифференциальных уравнений в частных производных для поверхностей пространства Галилея: Дис. . . . канд. физ.-мат. наук.—Пенза: ПГУ, 2007.—119 с.

10. Долгарев И. А. Нахождение поверхности в 3-мерном пространстве Галилея по ее квадратичным формам // Изв. высших учебных заведений. Поволжский регион. Сер. Естеств. науки.—2006.— № 5.—С. 51–60.

Статья поступила 29 августа 2008 г.

Долгарев Артур Иванович Пензенский Государственный университет, доцент кафедры математики и суперкомпьютерного моделирования РОССИЯ, 440026, Пенза, ул. Красная, 40 E-mail: delivar@yandex.ru

Долгарев Иван Артурович Пензенский Государственный университет, доцент кафедры математики и суперкомпьютерного моделирования РОССИЯ, 440026, Пенза, ул. Красная, 40 E-mail: delivar@yandex.ru

GALILEAN PLANE WITH COMMUTATIVE AND NONLINEAR GEOMETRY

Dolgarew A. I., Dolgarew I. A.

Galilean distance between two points on the plane with nonlinear geometry is introduced. A specified physical interpretation of such a plane is indicated. The curvature of regular curves is defined and it is proved that the curvature function determines uniquely the curve under consideration.

Key words: nonlinear Galilean plane.