UDC 517.98

WEAK INSERTION OF A CONTINUOUS FUNCTION BETWEEN TWO COMPARABLE FUNCTIONS¹

M. Mirmiran

We give a sufficient condition for insertion of a continuous function between two comparable real-valued functions in terms of lower cut sets.

Mathematics Subject Classification (2000): Primary 54C08, 54C10, 54C50; Secondary 26A15, 54C30.

Key words: weak insertion, strong binary relation, pre-open set, semi-open set, lower cut set.

1. Introduction

The concept of a pre-open set in a topological space was introduced by H. H. Corson and E. Michael in 1964 [3]. A subset A of a topological space (X, τ) is called *pre-open* or *locally dense* or *nearly open* if $A \subseteq \text{Int}(\text{Cl}(A))$. A set A is called *pre-closed* if its complement is preopen or equivalently if $\text{Cl}(\text{Int}(A)) \subseteq A$. The term, pre-open, was used for the first time by A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb [11], while the concept of a locally dense set was introduced by H. H. Corson and E. Michael [3].

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [10]. A subset A of a topological space (X, τ) is called *semi-open* [10] if $A \subseteq Cl(Int(A))$. A set A is called *semi-closed* if its complement is semi-open or equivalently if $Int(Cl(A)) \subseteq A$.

Recall that a real-valued function f defined on a topological space X is called A-continuous [12] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subset of X. Most of the definitions of continuous function used throughout this paper are the particular cases of the definition of A-continuity. However, for unknown concepts the reader may refer to [4, 5].

Hence, a real-valued function f defined on a topological space X is called *precontinuous* (resp. *semi-continuous*) if the preimage of every open subset of \mathbb{R} is pre-open (resp. semi-open) subset of X.

Precontinuity was called by V. Pták *nearly continuity* [13]. Nearly continuity or precontinuity is known also as *almost continuity* by T. Husain [6]. Precontinuity was studied for real-valued functions on Euclidean space by Blumberg back in 1922 [1].

Results of Katětov [7, 8] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a sufficient condition for the insertion of a continuous function between two comparable real-valued functions.

 $[\]bigodot$ 2010 Mirmiran M.

¹This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan)

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X. The following definitions are modifications of conditions considered in [9].

A property P defined relative to a real-valued function on a topological space is a *c*-property provided that any constant function has property P and provided that the sum of a function with property P and any continuous function also has property P. If P_1 and P_2 are *c*-properties, the following terminology is used: A space X has the weak *c*-insertion property for (P_1, P_2) if, given any functions g and f on X such that $g \leq f$, g has property P_1 and f has property P_2 , there exists a continuous function h such that $g \leq h \leq f$.

In this paper, a sufficient condition for the weak *c*-insertion property is given. Also several insertion theorems are obtained as corollaries of this result.

2. The Main Result

Before giving a sufficient condition for insertability of a continuous function, the necessary definitions and terminology are stated.

Let (X, τ) be a topological space. The family of all semi-open, semi-closed, pre-open and pre-closed will be denoted by $s O(X, \tau)$, $s C(X, \tau)$, $p O(X, \tau)$ and $p C(X, \tau)$, respectively.

DEFINITION 2.1. Let A be a subset of a topological space (X, τ) . Respectively, we define the *s*-closure, *s*-interior, *p*-closure and *p*-interior of A, denoted by $s \operatorname{Cl}(A)$, $s \operatorname{Int}(A)$, $p \operatorname{Cl}(A)$ and $p \operatorname{Int}(A)$ as follows:

 $s \operatorname{Cl}(A) = \bigcap \{F : F \supseteq A, F \in s C(X, \tau)\},\$

 $s \operatorname{Int}(A) = \bigcup \{ O : O \subseteq A, \ O \in s O(X, \tau) \},\$

 $p\operatorname{Cl}(A) = \bigcap \{F : F \supseteq A, F \in pC(X,\tau)\},\$

 $p \operatorname{Int}(A) = \bigcup \{ O : O \subseteq A, \ O \in p O(X, \tau) \}.$

Respectively, we have: $s \operatorname{Cl}(A)$ and $p \operatorname{Cl}(A)$ are semi-closed and pre-closed, $s \operatorname{Int}(A)$ and $p \operatorname{Int}(A)$ are semi-open and pre-open.

The following two definitions are modifications of conditions considered in [7, 8].

DEFINITION 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x\bar{\rho}y$ if and only if $y\rho v$ implies $x\rho v$ and $u\rho x$ implies $u\rho y$ for any u and v in S.

DEFINITION 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) if ρ satisfies each of the following conditions:

1) If $A_i \rho B_j$ for any $i \in \{1, \ldots, m\}$ and for any $j \in \{1, \ldots, n\}$, then there exists a set C in P(X) such that $A_i \rho C$ and $C \rho B_j$ for any $i \in \{1, \ldots, m\}$ and any $j \in \{1, \ldots, n\}$.

2) If $A \subseteq B$, then $A\bar{\rho}B$.

3) If $A\rho B$, then $\operatorname{Cl}(A) \subseteq B$ and $A \subseteq \operatorname{Int}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

DEFINITION 2.4. If f is a real-valued function defined on X and if $\{x \in X : f(x) < \ell\} \subseteq A(f,\ell) \subseteq \{x \in X : f(x) \leq \ell\}$ for a real number ℓ , then $A(f,\ell)$ is called a *lower indefinite cut* set in the domain of f at the level ℓ .

We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on a topological space X with $g \leq f$. Suppose that there exist a strong binary relation ρ on the power set of X and lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number tsuch that $t_1 < t_2$ implies $A(f,t_1)\rho A(g,t_2)$. Then there exists a continuous function h defined on X such that $g \leq h \leq f$. \triangleleft Let g and f be real-valued functions defined on X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that $t_1 < t_2$ implies $A(f,t_1)\rho A(g,t_2)$.

Define two set-valued functions F and G from the rationals \mathbb{Q} into the power set of Xby F(t) := A(f,t) and G(t) := A(g,t). If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then $F(t_1)\bar{\rho}F(t_2)$, $G(t_1)\bar{\rho}G(t_2)$, and $F(t_1)\rho G(t_2)$. By Lemmas 1 and 2 of [8] it follows that there exists a function H from \mathbb{Q} into P(X) such that if t_1 and t_2 are any rationals with $t_1 < t_2$, then $F(t_1)\rho H(t_2)$, $H(t_1)\rho H(t_2)$, and $H(t_1)\rho G(t_2)$.

Given $x \in X$, put $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$

We now verify that $g \leq h \leq f$: if x is in H(t) then x is also in G(t') for any t' > t; since x is in G(t') = A(g, t') implies that $g(x) \leq t'$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f, t') implies that f(x) > t', it follows that $f(x) \geq t$. Hence $h \leq f$.

Moreover, for any rationals t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = \text{Int}(H(t_2)) \setminus \text{Cl}(H(t_1))$. Hence $h^{-1}(t_1, t_2)$ is an open subset of X, i. e. h is a continuous function on X. \triangleright The above proof uses the technique similar to the proof of Theorem 1 in [7].

3. Applications

The abbreviations pc and sc are used for precontinuous and semicontinuous, respectively.

Corollary 3.1. If for each pair of disjoint preclosed (resp. semi-closed) sets F_1 , F_2 in X, there exist open sets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$, and $G_1 \cap G_2 = \emptyset$ then X has the weak c-insertion property for (pc, pc) (resp. (sc, sc)).

 \lhd Let g and f be real-valued functions defined on X such that f and g are pc (resp. sc) and $g \leq f$. If a binary relation ρ is defined by $A\rho B$ if and only if $p \operatorname{Cl}(A) \subseteq p \operatorname{Int}(B)$ (resp. $s \operatorname{Cl}(A) \subseteq s \operatorname{Int}(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any rationals with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \leq t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2).$$

Since $\{x \in X : f(x) \leq t_1\}$ is a pre-closed (resp. semi-closed) set and $\{x \in X : g(x) < t_2\}$ is a pre-open (resp. semi-open) set, it follows that $p \operatorname{Cl}(A(f,t_1)) \subseteq p \operatorname{Int}(A(g,t_2))$ (resp. $s \operatorname{Cl}(A(f,t_1)) \subseteq s \operatorname{Int}(A(g,t_2))$). Hence $t_1 < t_2$ implies that $A(f,t_1)\rho A(g,t_2)$. The proof follows from Theorem 2.1. \triangleright

Corollary 3.2. If for each pair of disjoint preclosed (resp. semi-closed) sets F_1 , F_2 , there exist open sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$, and $G_1 \cap G_2 = \emptyset$ then every precontinuous (resp. semi-continuous) function is continuous.

 \triangleleft Let f be a real-valued precontinuous (resp. semi-continuous) function defined on the X. Set g = f, then by Corollary 3.1, there exists a continuous function h such that g = h = f. \triangleright

Corollary 3.3. If for each pair of disjoint subsets F_1 , F_2 of X, such that F_1 is pre-closed and F_2 is semi-closed, there exist open subsets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X have the weak *c*-insertion property for (pc, sc) and (sc, pc).

 \triangleleft Let g and f be real-valued functions defined on X with $g \leq f$ such that g is pc (resp. sc) and f is sc (resp. pc). If a binary relation ρ is defined by $A\rho B$ if and only if $s \operatorname{Cl}(A) \subseteq p \operatorname{Int}(B)$ (resp. $p \operatorname{Cl}(A) \subseteq s \operatorname{Int}(B)$), then by hypothesis ρ is a strong binary relation in P(X). If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \leq t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2)$$

since $\{x \in X : f(x) \leq t_1\}$ is a semi-closed (resp. pre-closed) set and $\{x \in X : g(x) < t_2\}$ is a pre-open (resp. semi-open) set, it follows that $s \operatorname{Cl}(A(f,t_1)) \subseteq p \operatorname{Int}(A(g,t_2))$ (resp. $p \operatorname{Cl}(A(f,t_1)) \subseteq s \operatorname{Int}(A(g,t_2))$). Hence $t_1 < t_2$ implies that $A(f,t_1)\rho A(g,t_2)$. The proof follows from Theorem 2.1. \triangleright

References

- 1. Blumberg H. New properties of all functions // Trans. Amer. Math. Soc.—1922.—Vol. 24.—P. 113–128.
- 2. Brooks F. Indefinite cut sets for real functions // Amer. Math. Monthly. –1971.–Vol. 78.–P. 1007–1010.
- Corson H. H., Michael E. Metrizability of certain countable unions // Illinois J. Math.—1964.—Vol. 8.— P. 351–360.
- Dontchev J. The characterization of some peculiar topological space via α- and β-sets // Acta Math. Hungar.—1995.—Vol. 69, № 1–2.—P. 67–71.
- 5. Ganster M., Reilly I. A decomposition of continuity // Acta Math. Hungar.—1990.—Vol. 56, № 3–4.— P. 299–301.
- 6. Husain T. Almost continuous mappings // Prace Mat.-1966.-Vol. 10.-P. 1-7.
- 7. Katětov M. On real-valued functions in topological spaces // Fund. Math.-1951.-Vol. 38.-P. 85-91.
- Katětov M. On real-valued functions in topological spaces // Fund. Math.—1953.—Vol. 40.—P. 203–205.—(Correction).
- 9. Lane E. Insertion of a continuous function // Pacific J. Math.-1976.-Vol. 66.-P. 181-190.
- Levine N. Semi-open sets and semi-continuity in topological space // Amer. Math. Monthly.—1963.— Vol. 70.—P. 36–41.
- Mashhour A. S., Abd El-Monsef M. E., El-Deeb S. N. On pre-continuous and weak pre-continuous mappings // Proc. Math. Phys. Soc. Egypt.—1982.—Vol. 53.—P. 47–53.
- 12. Przemski M. A decomposition of continuity and α -continuity // Acta Math. Hungar.—1993.—Vol. 61, Nº 1–2.—P. 93–98.
- Pták V. Completeness and open mapping theorem // Bull. Soc. Math. France.—1958.—Vol. 86.—P. 41– 74.

Received April 20, 2009

MIRMIRAN MAJID Department of Mathematics, University of Isfahan Isfahan 81746-73441, Iran E-mail: mirmir@sci.ui.ac.ir

О СУЩЕСТВОВАНИИ НЕПРЕРЫВНОЙ ФУНКЦИИ МЕЖДУ ДВУМЯ СРАВНИМЫМИ ВЕЩЕСТВЕННЫМИ ФУНКЦИЯМИ

Мирмиран М.

В терминах лебеговых множеств функции найдены условия, при которых между двумя сравнимыми вещественнозначными функциями можно вставить непрерывную функцию.

Ключевые слова: слабая вставляемость, сильное бинарное отношение, предоткрытое множество, полуоткрытое множество, лебегово множество.