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ON CONSERVATION LAWS IN AFFINE TODA SYSTEMS1

M. S. Nirova

With the help of certain matrix decomposition and projectors of special forms we show that non-Abelian
Toda systems associated with loop groups possess infinite sets of conserved quantities following from
essentially different conservation laws.
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1. Introduction

Classical integrable systems are understood as nonlinear differential equations which can
be integrated in one or another sense. According to Liouville [1], the integrability of a system
with 2n degrees of freedom is related to the existence of an Abelian n-torus. However, it is
not always possible to reveal such tori explicitly in the phase space. For some complicated
systems, for example, one can construct general solutions explicitly in quadratures, but with
no way obvious to find respective “action-angle” variables. Or one can find certain number
of integrals of motion, required by the Liouville–Arnold’s theorem, but with the question of
involutivity of such quantities still to be answered. In any case, the integrability of a nonlinear
system is based on its symmetries. The most popular viewpoint at present is that a system
is regarded as integrable, if for the equations describing it one can propose a constructive
way to find their solutions, and one can prove that it possesses sufficient number of conserved
quantities.

Of special interest are two-dimensional systems which can be represented in the form of
the zero curvature condition. These are, for example, the Liouville equation, the Nonlinear
Schrödinger equation and its modifications, the KdV equation, the sine-Gordon equation that,
also describing, as physicists believe, a system equivalent to the Thirring model, and others [2,
3]. In particular, all these systems are very attractive for investigations in mathematical
physics and differential geometry. Here we consider Toda systems associated with loop groups,
which actually cover most interesting examples of completely integrable systems [4]. In
the case of Toda systems associated with finite-dimensional Lie groups one obtains simple
conservation laws whose densities give rise to the so-called W -algebras [5].

It is usually claimed that the complete integrability of such systems should be due to the
existence of infinite sets of conserved quantities produced by some current conservation laws.
This observation has not received a form of a proved statement yet, and so, it still attracts
much attention in the scope of the theory of integrable systems. Besides, it is believed that
the classification of integrable systems can be performed along the lines of a “symmetry
approach”, which is also using the conservation laws [6, 7].
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Hence, the main purpose of our paper is to present, in justifiable detail, current conser-
vation laws for non-Abelian Toda systems, which should produce infinite sets of conserved
quantities responsible for the integrability of the nonlinear equations under consideration.
In particular, our consideration gives a generalization of what was presented in [8]. Our
approach, based upon a detailed consideration of the matrices c± entering the equation un-
der consideration, allows one to separate explicitly proper current conservation laws from
the simpler WZNW-type conservation laws and those special relations leading to nonlinear
W -algebra extensions of Virasoro algebras.

2. Toda systems and their simplest symmetries

Let G be a complex or real Lie group and g its Lie algebra. Consider a trivial principal
fiber bundle M × G → M with G as the structure group. Here M is a two-dimensional
base manifold, being as usual either C or R

2, where standard coordinates z− and z+ are
introduced. The Toda equations can be obtained from the zero-curvature condition for a
connection on M × G → M imposing grading and gauge-fixing constraints on elements of
g. In this, the connection is identified with a g-valued 1-form on M , and as such, can be
decomposed over basis 1-forms,

ω = ω−dz− + ω+dz+,

where the components ω−, ω+ are g-valued functions on M . One says that the connection ω
is flat, and so, the corresponding curvature is zero, if and only if, in terms of the components,
one has

∂−ω+ − ∂+ω− + [ω−, ω+] = 0. (2.1)

The partial derivatives ∂− and ∂+ are taken over the standard coordinates z− and z+, re-
spectively.

We study models based on the loop Lie group G = L (GLn(C)) given by the smooth
mappings from the circle S

1 to the Lie group GLn(C) with the group composition defined
point-wise. Its Lie algebra g is the loop algebra L (gln(C)) formed by the smooth mappings
from S

1 to gln(C). The circle S
1 is parameterized here by the set of complex numbers λ

of modulus 1, and extending the unit circle to the whole Riemann sphere we introduce the
so-called spectral parameter denoted here by the same symbol λ. Here we consider a non-
Abelian analogue of the standard grading [9, 10] and use a representation where the gradation
is over powers of λ.

To obtain nontrivial systems from the zero-curvature condition one should impose on ω
grading and gauge-fixing conditions [4, 11]. We assume that g is endowed with a Z-gradation,

g =
⊕

m∈Z

gm, [gm, gn] ⊂ gm+n,

and for some positive integer l the subspaces g−m and g+m for 0 < m < l are trivial. Note
that g0 is a Lie subalgebra of g. Denote by G0 the connected Lie subgroup of G which has
g0 as its Lie algebra. It can be shown that the connection ω can be brought to a form given
by the components2

ω−(λ) = γ−1∂−γ + λ−1c−, ω+ = λγ−1c+γ, (2.2)

2 Hereafter we put l = 1, that can be done without any loss of generality.
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where γ is a mapping from M to G0, and c− and c+ are some fixed mappings from M to g−l

and g+l, respectively, such that ∂+c− = 0, ∂−c+ = 0. The zero-curvature condition for the
connection with the components (2.2) produces the Toda system that is the nonlinear matrix
differential equation

∂+(γ−1∂−γ) = [c−, γ
−1c+γ]. (2.3)

The Toda equation can also be written in another equivalent form,

∂−
(
∂+γγ

−1
)

= [γc−γ
−1, c+], (2.4)

in which case the connection components are

ω− = λ−1γc−γ
−1, ω+ = −∂+γγ

−1 + λc+. (2.5)

When the Lie group G0 is Abelian the corresponding Toda system is said to be Abelian,
otherwise one deals with a non-Abelian Toda system [11–13]. The complete list of the Toda
systems associated with finite-dimensional Lie groups is presented in [14]. For the case of
loop Lie groups the respective classification was performed in [15, 16].

Let η− and η+ be some mappings from M to G0 subject to the conditions

∂+η− = 0, ∂−η+ = 0.

If a mapping γ satisfies the Toda equation (2.3) then the mapping

γ′ = η−1
+ γη− (2.6)

satisfies the Toda equation (2.3) with the functions c− and c+ replaced by

c′− = η−1
− c−η−, c′+ = η−1

+ c+η+. (2.7)

In this sense the Toda equations defined with the fixed functions c± and c′± related by (2.6),
(2.7) are equivalent. It is clear that conservation laws when established in terms of such
transformed quantities should be the same as they would be for the original ones.

If the mappings η− and η+ satisfy the relations η−1
− c−η− = c−, η

−1
+ c+η+ = c+, then the

mapping γ ′ satisfies the same Toda equation as the mapping γ. Hence, in such a case the
transformation described by (2.6) is a symmetry transformation for the Toda equations. It
gives simplest symmetries of the Toda equations, inherited from the WZNW theory [5].

Now, the mapping γ takes values in the Lie group of complex non-degenerate block
diagonal n × n matrices, possessing the partition just according to the Z-gradation under
consideration, that is

γ =




Γ1 0 · · · 0
0 Γ2 · · · 0
...

...
. . .

...
0 0 · · · Γr


 ,

with Γa taking values in the space of complex non-degenerate ka × ka matrices. The fixed
matrix-valued mappings c− and c+ are explicitly of the forms

c− =




0 0 · · · 0 C−r

C−1 0 · · · 0 0
0 C−2 · · · 0 0
...

...
. . .

...
...

0 0 · · · C−(r−1) 0



, c+ =




0 C+1 0 · · · 0
0 0 C+2 · · · 0
...

...
...

. . .
...

0 0 0 · · · C+(r−1)

C+r 0 0 · · · 0



,
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where C−a denotes a ka+1 × ka submatrix, and the block C+a means a ka × ka+1 submatrix.
It is worthwhile noting that the following relations hold:

s−1Sc−S
−1 = c−, sSc+S

−1 = c+, (2.8)

where S is a constant diagonal n× n matrix

S =




sIk1 0 · · · 0
0 s2Ik2 · · · 0
...

...
. . .

...
0 0 · · · Ikr


 , (2.9)

with s being the rth principal root of unity, s = e2πi/r, so that in terms of the block subma-
trices

Sa,b = saIkaδab.

The matrix S satisfies the relation

Sr = In,

where In is the unit n× n matrix.

In terms of the submatrices the n× n matrix Toda equation (2.3) takes the form

∂+

(
Γ−1

a ∂−Γa

)
= C−(a−1)Γ

−1
a−1C+(a−1)Γa − Γ−1

a C+aΓa+1C−a, (2.10)

with a = 1, 2, . . . , r, . . . and the periodicity condition imposed as follows:

Γa+r = Γa, C−(a+r) = C−a, C+(a+r) = C+a.

These submatrices, if transformed according to (2.6), (2.7), would look here as follows:

Γ′a = η−1
+aΓaη−a, C ′−a = η−1

−(a+1)C−aη−a, C ′+a = η−1
+aC+aη+(a+1),

with the block diagonal matrices η± defined by (η±)ab = η±aδab.

3. The mappings c− and c+ as linear operators

Denote by k∗ the minimum value of the partition numbers {ka} and suppose that the fixed
mappings c− and c+ are chosen to be constant. Besides, we assume that the submatrices
C−a and C+a are of maximum ranks, and they respect the commutativity between c− and
c+. Consider the eigenvalue problem for the linear operators c− and c+. The corresponding
characteristic polynomial is (−1)ntn−rk∗(tr−1)k∗ , and this gives us the characteristic equation

tn−rk∗

r∏

a=1

(t− sa)k∗ = 0.

Therefore, the spectra of the eigenvalue problems corresponding to the mappings c− and c+
consist of the zero eigenvalue of algebraic multiplicity n− rk∗ and nonzero eigenvalues being
powers of the rth root of unity of algebraic multiplicity k∗. To see this, it is sufficient to use
the transformations (2.6), (2.7) with a special choice of the mappings η− and η+ and recall
the fact that eigenvalues of similar matrices do coincide.
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The eigenvalue problem relations

c−ψ
(b) = s−bψ(b), c+ψ

(b) = sbψ(b), b = 1, 2, . . . , r, (3.1)

are fulfilled with the eigenvectors represented by n× k∗ matrices ψ(b),

ψ(b)t =
(
ψ

(b)t
1 , . . . , ψ(b)t

a , . . . , ψ(b)t
r

)
,

where its block submatrices are

ψ(b)
a = sabξa, ψ(−b)

a = s−abξa,

with constant ka × k∗ submatrices ξa satisfying the conditions

C−aξa = ξa+1, C+aξa+1 = ξa.

Denote by p the rank of the matrix c−. Then we have n − p = dimker c−. It means that
there are an n × (n − p) matrix u and an (n − p) × n matrix v∨, corresponding to the zero
eigenvalue of c−,

c−u = 0, v∨c− = 0. (3.2)

Note that u and v∨ are orthogonal to ψ(b) for every b = 1, 2, . . . , r. In general, however, the
algebraic multiplicity of an eigenvalue does not coincide with its geometric multiplicity, the
former is just non less than the latter, and so, n−p 6 n−rk∗. In particular, it is exactly what
happens to the zero eigenvalue of c−, so that its algebraic multiplicity we have received from
the characteristic equation, does not coincide with the dimension of the corresponding null
subspace. Hence, one should remember that the rank of c− might be greater than the total
number of its nonzero eigenvalues. It is a consequence of the fact that c− contains a non-
diagonalizable part, corresponding to the zero eigenvalue, that is actually the nilpotent part
of c− according to its Jordan normal form. It is clear that for the case under consideration
p = rank c− =

∑r
a=1 min (ka, ka+1) > rk∗.

Let v be the vector dual to the left null vector v∨ of the matrix c−, and u∨ the dual of its
right null vector u. They are n× (n− p) and (n− p) × n matrices subject to the conditions
v∨v = In−p and u∨u = In−p. Treating c− as a matrix of a linear operator acting on an
n-dimensional vector space V , that is c− : V → V , we see that the latter can be decomposed
into a direct sum as V = V0⊕V1, where V1 is an rk∗-dimensional subspace spanned by the ψ-
eigenvectors of c− with nonzero eigenvalues, actually, V1 = im c−; and V0 is simply defined to
be its orthogonal complement. Besides, we can perform another decomposition of V , namely
V = U0 ⊕ U1, where U0 = ker c−, and so, it is spanned by the columns of the n × (n − p)
matrix u, while U1 is just the orthogonal complement to U0. These decompositions induce
dual decompositions V ∗ = V ∗0 ⊕ V ∗1 and V ∗ = U∗0 ⊕ U∗1 , such that V ∗1 is spanned by the left
eigenvectors of c− being dual to ψ(b), and V ∗0 is determined to be the orthogonal complement
to V ∗1 ; further, U ∗0 is spanned by the left null vectors (the rows of v∨) of c−, and U∗1 appears
to be its orthogonal complement.

For the case under consideration the linear space V is isomorphic to its dual V ∗. In view
of the above discussion of properties of the eigenvalues of c−, we see that n− rk∗ = dimV0 >

dimU0 = n− p, and p = dimU1 > dimV1 = rk∗. It is clear also that the following relations
hold: U0 ⊆ V0, V1 ⊆ U1 (and similarly for the duals). We stress on that U0 and U∗0 are
the right and left null subspaces of the linear operator c−, while V1 and V ∗1 are subspaces
generated by its right and left ψ-eigenspaces. Actually, one can write

V0 ∩ U0 = U0, V ∗0 ∩ U∗0 = U∗0 , V1 ∩ U0 = V ∗1 ∩ U∗0 = ∅, (3.3)
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V1 ∩ U1 = V1, V ∗1 ∩ U∗1 = V ∗1 , V0 ∩ U1 6= ∅, V ∗0 ∩ U∗1 6= ∅. (3.4)

These relations are the basis for the subsequent construction of certain useful projectors. A
similar treatment can also be given to the linear operator c+ as well.

4. General current conservation laws

Let us introduce a decomposition of the identity operator idV ,

In = Π1 + Π0,

where Π1 is a projector onto the subspace V1, while Π0 is the projector onto the complemen-
tary subspace V0,

Π2
0 = Π0, Π2

1 = Π1, Π1Π0 = Π0Π1 = 0.

We also have
[c−,Π1] = 0, [c−,Π0] = 0.

Note that the generalized non-Abelian analogue of the cyclicity property reads here simply
cr− = cr+ = Π1. Further, we introduce projectors onto the null subspace U0 and its dual space
U∗0 ,

R0 = uu∨, L0 = vv∨,

such that, together with their orthogonal complements R1 = In −R0 and L1 = In −L0, they
reveal the following properties:

L1Π1 = Π1, L0Π1 = 0, L0Π0 = L0, (4.1)

Π1R1 = Π1, Π1R0 = 0, Π0R0 = R0, (4.2)

and also
L1Π0 = L1 − Π1 = Π0 − L0, Π0R1 = R1 − Π1 = Π0 −R0. (4.3)

These relations are a direct consequence of (3.3) and (3.4). The r.h.s. of (4.3) would be
identically zero, if the nilpotent part of the matrix c− is trivial. However, in general, these
are some nontrivial projectors onto V ∗0 ∩ U∗1 and V0 ∩ U1, respectively.

The matrix Toda equation (2.3) decomposes into four sets,

∂+

(
Π1γ

−1∂−γΠ1

)
= [c−,Π1γ

−1c+γΠ1], (4.4)

and besides,
∂+

(
Π0γ

−1∂−γΠ0

)
= [c−,Π0γ

−1c+γΠ0], (4.5)

∂+

(
Π1γ

−1∂−γΠ0

)
= [c−,Π1γ

−1c+γΠ0], (4.6)

∂+

(
Π0γ

−1∂−γΠ1

)
= [c−,Π0γ

−1c+γΠ1]. (4.7)

It is well known that the zero-curvature condition (2.1) can be interpreted as the integrability
condition imposed on the so-called linear problem [3]

`−(λ)Ψ = 0, `+(λ)Ψ = 0,

for some function Ψ taking values in G, with the differential operators `− and `+ being
explicitly

`−(λ) = ∂− + ω−(λ), `+(λ) = ∂+ + ω+(λ).
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Indeed, from the requirement [
`−(λ), `+(λ)

]
Ψ = 0,

which holds at any power of the parameter λ, we derive the Toda equation (2.3).
Consider the parts (4.4)–(4.7) of the Toda equation in their order. The equation (4.4)

follows from the integrability condition for the linear problem

(
∂− + Π1γ

−1∂−γΠ1 + λ−1c−
)
Ψ = 0,

(
∂+ + λΠ1γ

−1c+γΠ1

)
Ψ = 0. (4.8)

It is actually this, and only this, part of the full matrix Toda equation that is connected with
the diagonalizable part of the matrix c−. We are interested in conservation laws respecting
the Toda equation (4.4), and thus the linear problem (4.8). Choose k∗ × ka matrices ξ∨a to
be dual to the vectors ξa, to have

ξ∨a ξa = Ik∗

for every value of a = 1, 2, . . . , r. Introduce n× n matrices D and D∨ being explicitly of the
forms

D = r−1/2
(
ψ(1)ξ∨1 , ψ

(2)ξ∨2 , . . . , ψ
(r)ξ∨r

)
, (4.9)

D∨ = r−1/2
(
ψ(−1)ξ∨1 , ψ

(−2)ξ∨2 , . . . , ψ
(−r)ξ∨r

)
, (4.10)

and possessing remarkable properties

D∨D = DD∨ = Π1,

so that one has
D∨Π1 = D∨, Π1D = D.

The matrices D and D∨ have inherited the block matrix structure induced by the grading
condition imposed to obtain the Toda system under consideration. Explicit expressions of
the corresponding ka × kb submatrices are

Dab = r−1/2sabξaξ
∨
b , D∨ab = r−1/2s−abξaξ

∨
b .

Then the linear problem (4.8) is equivalent to the relations

(
∂− +D∨γ−1∂−γD + λ−1D∨c−D

)
Ψ̃ = 0,

(
∂+ + λD∨γ−1c+γD

)
Ψ̃ = 0, (4.11)

where Ψ̃ = D∨Ψ. Point out that ψ(b) = Sbψ(0), where S is the diagonal matrix (2.9).
Recalling the relations (3.1) and using the expressions (4.9), (4.10) and the property (2.8) of
c−, such that

c−D = DS−1,

one can write
c− → c̃− = D∨c−D = Π1S

−1.

We conclude that the action of the matrices D and D∨ diagonalize the matrix c−.
Represent the general solution to the linear problem (4.11) as follows (cf. [8]):

Ψ̃ = Φχ exp (−λ−1c̃−z
−), (4.12)

where χ is a block diagonal matrix, and Φ allows for the asymptotic expansion

Φ =
∑

k>0

λkΦk, (4.13)
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such that Φ0 = In, while only off-diagonal blocks are nonzero in all other Φk. We also assume
that Φ and χ are such matrices that

[Φ,Π1] = 0, [χ,Π1] = 0.

It follows from (4.11) that

∂−Φ + (D∨γ−1∂−γD)Φ + Φ(∂−χχ
−1) + λ−1[Π1S

−1,Φ] = 0, (4.14)

∂+Φ + Φ(∂+χχ
−1) + λ(D∨γ−1c+γD)Φ = 0. (4.15)

Further, using the asymptotic expansions

∂−χχ
−1 =

∑

k>0

λkΣk, ∂+χχ
−1 =

∑

k>0

λkΘk, (4.16)

we obtain recurrent relations

∂−Φk +
k∑

i=1,j=0
i+j=k

ΦiΣj +D∨γ−1∂−γDΦk + [Π1S
−1,Φk+1] = 0, (4.17)

∂+Φk +

k∑

i=1,j=0
i+j=k

ΦiΘj +D∨γ−1c+γDΦk−1 = 0, (4.18)

which allow us to define off-diagonal blocks of Φk+1 (which are, in fact, the only nonzero
ones) through those of Φl, l 6 k. And besides, we have

Σk = −Diag
(
D∨γ−1∂−γDΦk

)
, Θk = −Diag

(
D∨γ−1c+γDΦk−1

)
,

where Diag means taking the block submatrices attached to the main diagonal according to
the Z-gradation. In particular, we get from (4.17) an explicit form of Φ1 in terms of its block
ka × kb submatrices,

(Φ1)a,b =
sa+b

sa − sb

(
D∨γ−1∂−γD

)
a,b
, a 6= b.

We see from (4.16) that the block diagonal matrices Σk and Θk satisfy the equations

∂+Σk − ∂−Θk +

k∑

i,j=0
i+j=k

[Σi,Θj ] = 0.

In terms of the block submatrices the latter equation reads

∂+Σa
k − ∂−Θa

k +

k∑

i,j=0
i+j=k

[Σa
i ,Θ

a
j ] = 0, (4.19)

where we have taken into account that

(Σk)a,b = Σa
kδab, (Θk)a,b = Θa

kδab.
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Therefore, introducing the quantities

σa
k = trΣa

k, θa
k = trΘa

k,

we derive from (4.19) r infinite sets of current conservation laws

∂+σ
a
k − ∂−θ

a
k = 0,

where the indices k = 0, 1, 2, . . ., and a = 1, 2, . . . , r. For k = 0 we obtain relations which
are trivially satisfied due to the Toda equations (2.10). The case k = 1 gives us the energy-
momentum conservation law for the non-Abelian Toda system under consideration.

There are other r infinite sets of current conservation laws in the system under consid-
eration. They can be obtained along the same way of approach, only that starting with the
Toda equation in the form (2.4). There one would face the diagonalization of the matrix c+

in the corresponding linear problem,

c+ → c̃+ = D∨c+D = Π1S,

and work recurrent relations out of asymptotic expansions in λ−1.
Now, it follows from (4.1), (4.2) that nontrivial conservation laws corresponding to the

Toda equation (4.4) are exhausted by our consideration above. Note that the semisimple
part of the matrix c− entered this equation alone, while its nilpotent part turned out to be
involved and separated into the remaining equations.

The equation (4.5) follows from the integrability condition imposed on the linear problem

(
∂− + Π0γ

−1∂−γΠ0 + λ−1c−
)
ϕ = 0,

(
∂+ + λΠ0γ

−1c+γΠ0

)
ϕ = 0,

and to this equation correspond W -symmetry and WZNW-type conservation laws present
in the Toda system under consideration. To see this, one can simply use the relations (3.2)
and (4.1), (4.2) with the projectors. One derives from (4.5), in particular, that

∂+(L0γ
−1∂−γR0) = 0.

To the rest of the matrix Toda equation (2.3) Drinfeld–Sokolov techniques are applicable
and correspond certain W -symmetry type conservation laws [5]. Consider the equations (4.6)
and (4.7). These are obtained from the integrability condition imposed on the linear problems

(
∂− + Π1γ

−1∂−γΠ0 + λ−1c−
)
φ = 0,

(
∂+ + λΠ1γ

−1c+γΠ0

)
φ = 0

and (
∂− + Π0γ

−1∂−γΠ1 + λ−1c−
)
φ = 0,

(
∂+ + λΠ0γ

−1c+γΠ1

)
φ = 0,

respectively. It follows from these conditions also that

∂−
(
Π1γ

−1c+γΠ0

)
= 0, ∂−

(
Π0γ

−1c+γΠ1

)
= 0.

Other relations can be obtained while using properties of the projectors.
Concluding this part, we have seen that to the equations (4.6) and (4.7) correspond

conservation laws with the conserved matrix-valued current Π1γ
−1c+γΠ0 and Π0γ

−1c+γΠ1

having no dependence on z+. These quantities produce conserved charges as just it happens in
non-Abelian Toda systems associated with finite-dimensional Lie groups [5]. Such a mixture
of essentially different types of conservation laws in non-Abelian Toda systems can be explain
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by certain properties of the matrix-valued mapping entering the Toda equation. Indeed, the
matrices c− and c+ turn out to be a sum of commuting nilpotent and semi-simple parts,
that is just implying the so-called Jordan decomposition of a linear operator, for which one
obtains W -symmetry and WZNW-type and “usual” current conservation laws’ type relations,
respectively.

An interesting special case is also revealed when only submatrices C−r and C+r are
nontrivial, thus leading to a combination of WZNW- and W -type symmetries.

5. Abelian Toda system

It is instructive to consider an Abelian affine Toda system being a particular case of the
non-Abelian system considered in the preceding sections. To construct one, we put r = n
and all ka = 1, reproducing the standard gradation of L (gln(C)). The mapping γ here is
a diagonal n × n matrix γ = ‖Γiδij‖, where Γi are ordinary functions of z− and z+. The
mappings c− and c+ can be chosen being proportional to the cyclic elements of g. Explicitly,
it reads c− = ‖µδi,j+1‖ and c+ = ‖µδi+1,j‖, where δij is the n-periodic Kronecker symbol
and µ some nonzero constant. We see that the matrix Toda equation (2.3) is equivalent to a
system of nonlinear partial differential equations, which is convenient to treat as the infinite
system

∂+(Γ−1
i ∂−Γi) = −µ2(Γ−1

i Γi+1 − Γ−1
i−1Γi), i ∈ Z,

with Γi subject to the periodicity condition Γi+n = Γi.
Remembering the basic property (2.8) of c−, where now Sij = siδij , s = e2πi/n, and

introducing n-dimensional vectors ψ(l) = Slψ(0), for the n-dimensional vector ψ(0) given by
ψ(0)t = n−1/2 (1, 1, . . . , 1), we obtain

c−ψ
(l) = µs−lSlψ(0) = µs−lψ(l).

Representing the n × n matrix D as D =
(
ψ(1), ψ(2), . . . , ψ(n−1), ψ(0)

)
, that, in terms of the

matrix elements, reads Dij = n−1/2sij , we derive the relation

c−D = µDS−1.

The matrix D is non-degenerate in this Abelian case. Hence, from the relation

c− → c̃− = D−1c−D = µS−1

we conclude that the operator D diagonalizes the cyclic matrix c−. Now we have the linear
problem with transformed operators ˜̀1(λ) = ∂− + γ̃−1∂−γ̃ + λ−1c̃−, where γ̃ = γD, and
so, γ̃ij = n−1/2Γis

ij, γ̃−1
ij = n−1/2s−ijΓ−1

j , and ˜̀2(λ) = ∂+ + λγ̃−1c+γ̃. Further, we have

Ψ̃ = D−1Ψ.
Following again [8], we separate the diagonal and non-diagonal parts of Ψ̃ as follows.

Represent Ψ̃ in the form Ψ̃ = Φχ exp(−λ−1c̃−z
−), where χ is a diagonal n× n matrix, while

Φ allows for the asymptotic expansion in λ (4.13), where again Φ0 is the unit matrix In, and
in all other Φk, k > 1, only off-diagonal matrix elements are nonzero. Note that c̃− commutes
with χ. It is convenient to represent χ as χ = expσ, where σ can be asymptotically expanded
σ =

∑
k>0 λ

kσk. Substituting the asymptotic expansions of Φ and σ to the integrability
condition (4.14), (4.15) and taking into account that in the Abelian case Π1 → In and
D∨ → D−1, we obtain the recursive relations

∂−Φk +

k∑

i=1,j=0
i+j=k

Φi∂−σj + γ̃−1∂−γ̃Φk + [c̃−,Φk+1] = 0, (5.1)
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∂+Φk +
k∑

i=1,j=0
i+j=k

Φi∂+σj + γ̃−1c+γ̃Φk−1 = 0 (5.2)

for the non-diagonal elements, and

∂−σk = −diag
(
γ̃−1∂−γ̃Φk

)
, ∂+σk = −diag

(
γ̃−1c+γ̃Φk−1

)
. (5.3)

For the matrix elements of σk holds the representation (σk)ij = σ
(i)
k δij . These recurrent

relations can be resolved for all Φk and σk, k = 0, 1, 2, . . ., for which it is sufficient to note
that Φ0 = In and

∂−σ0 = −diag
(
γ̃−1∂−γ̃

)
, ∂+σ0 = 0.

The latter is compatible because
∂+(γ̃−1∂−γ̃)ii = 0

thanks to the Toda equations. Taking k = 1 as the first nontrivial example, we find

σ
(i)
1 = −

∫
dz−(γ̃−1∂−γ̃Φ1)ii −

∫
dz+(γ̃−1c+γ̃)ii,

with explicit forms of the matrix elements under integration

(
γ̃−1∂−γ̃

)
ij

=
1

n

n∑

l=1

s−l(i−j)Γ−1
l ∂−Γl,

(
γ̃−1c+γ̃

)
ij

=
sj

n

n∑

l=1

s−l(i−j)Γ−1
l Γl+1,

and where

(Φ1)ij =
si+j

µn(si − sj)

n∑

l=1

s−l(i−j)Γ−1
l ∂−Γl, i 6= j.

Thus resolving the recurrence (5.1), we can determine Φk and so obtain σk from (5.3).
For the latter quantities, imposing ∂+∂−σk = ∂−∂+σk, we get current conservation laws

∂+δ
+
k − ∂−δ

−
k = 0, (5.4)

where
δ+k = diag

(
γ̃−1∂−γ̃Φk

)
, δ−k = diag

(
γ̃−1c+γ̃Φk−1

)
. (5.5)

But then, the relations (5.4) give n infinite sets of current conservation laws, with the currents
components (5.5). So for k = 0 these relations are true due to the Toda equations, while for
k = 1, seeing the explicit forms of σ1 and Φ1 given above, we find the energy-momentum
conservation law for the Abelian affine Toda system.

There are other n infinite sets of current conservation laws corresponding to the Toda
equations written in the right invariant form, which is obtained from the linear problem
where the matrix c+ is being diagonalized, c+ → c̃+ = D−1c+D = µS.
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О ЗАКОНАХ СОХРАНЕНИЯ В АФФИННЫХ ТОДОВСКИХ СИСТЕМАХ

Нирова М. С.

С помощью некоторого матричного разложения и проекторов мы показываем, что неабелевы то-
довские системы, связанные с группами петель, обладают бесконечными наборами сохраняющихся
величин, порождаемых существенно различными законами сохранения токов.

Ключевые слова: неабелевы уравнения Тоды, группы петель, симметрии и законы сохранения.


