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ERROR INEQUALITIES FOR SOME NEW QUADRATURE FORMULAS
WITH WEIGHT INVOLVING n KNOTS AND THE L,-NORM
OF THE m-th DERIVATIVE ON TIME SCALES!

P. T. Dung, N. T. Chung, V. N. Huy

In this paper we generalize the Ostrowski inequality on time scales for n points and the L, norm of m-th
derivative, where m,n € N and p € [1, +o0].
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1. Introduction

In 1938, Ostrowski proved the following interesting integral inequality which has received
considerable attention from many researchers [1, 5, 6, 13-16].

Let f : [a,b] — R be continuous on [a,b] and differentiable in (a,b) and its derivative
f": (a,b) = R is bounded in (a,b), that is || f/|le := SUDge (a,b) |f'(x)] < oo. Then for any
x € [a,b], we have the inequality

‘/bf(t) dt—f(a:)(b—a)‘ < (% N <x_ a—2|—b>2>”f,”w .

In |9], the following results was obtained: If f : [a,b] — R is such that f®~1 is an
absolutely continuous function and v, < f(z) < T, for all = € [a, b] for some constants 7,
and I';,, then

b+a
2

‘b—a

— | 7@ + 41 (

b
) + f(b)} - /f(t) dt‘ < Co(Tp — )b —a)™t,  (1.2)

where the constants C; = %, Cy = 7}2 and C5 = ﬁ are sharp in the sense that they cannot

be replaced by smaller ones.
Very recently, V. N. Huy et al. [5, 6] have strengthened (1.1) and (1.2) by enlarging the
number of knots. More precisely, they proved that

b

b—a —
'/f(m)dm—T;f(a+mi(b—a))

a

< Aa,bﬂn(s - S)a (1'3)
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< Bapmll £ s (1.4)

b n
'a/f(x) do — bT;f(a+xi(b— 2))

where s = inf (4 ) (z) and S = SUP,¢[q,4) £ (), and

L 1
];‘/E}“:Hl (Vi=1,2,...,m). (1.5)

Note that, (1.5) have the solutions only for n € [1,9], n € N (see [17-19)]).
On time scales,the Ostrowski type inequalities have been generalized in various ways. For

example, [2, 3, 10]. It proved in |2| the following result on time scales: Let a,b,z,t € T, a < b
and f : [a,b] — R be differentiable, M = sup,,; |f*(z)|. Then

b
\ [ 17080 - 1@)0 - 0)| < Ma(e.) + hafo 1),

where hy(-,-) is defined in section 2.

In this paper, making use of the above theorem and some simple estimations, we obtain
propose a new way of treating a class of quadrature formulas with weight involving n points
and the L, norm of m-th derivative on time scales where m,n € Nand 1 < p < oc.

2. Preliminaries on time scales

A time scale is a nonempty closed subset of R and is denoted by T. We define the forward
and backward jump operators o,p: T — T by

o(t)=inf{se€T: s>t}, pt)=sup{seT:s<t} (VteT),

with inf @ = supT and sup@ = inf T. A point ¢t € T is called right-dense, right-scattered,
left-dense and left-scattered if o(t) = t, o(t) > t, p(t) = t and p(t) < t, respectively. We
now introduce the set T which is derived from the time scales T, as follows. If T has a left-
scattered maximum m then T* = T — {m}, otherwise T¥ = T. The delta graininess function
p: T — [0,00) is defined by

u(t):=o(t)—t (VteT).

If f: T — Ris a function then we define the function f7: T — R by
fot) = flet) (VteT).

We say that a function f : T — R is delta differentiable at t € T* if there exists a number
fA(t) such that for all € > 0 there is a neighborhood U of t (i.e., U = (t — 6, + ) N T for
some 6 > 0) such that

[f(@(8)) = f(s) = FRDO(0(t) = 8)| < elo(t) = )| (Vs €U).

We call f2(t) the delta derivative of f at t.
For delta differentiable function f and g, the next formula holds:

(f9)2(t) = f2g7(t) + f(£)g™ () = f2g(t) + f7(£)g™ (t).



Error inequalities for some new quadrature formulas involving n knots 11

A function f: T — R is said to be rd-continuous if it is continuous at right-dense points,
and its left-side limits exist at left-dense points.

A function F : T — R is called a A-antiderivative of f : T — R provided F2(t) = f(t)
holds for all t € T*. Then the A-integral of f is defined by ff f)At = F(b) — F(a).

It is known that every rd-continuous function f has an antiderivative.

The functions hy : T? — R are defined recursively as follows:

t

ho(tos) = 1. hys(t,s) = / hi(r, )y (Vs,t € T).

S

Proposition 2.1. If a,b € T, then the assertions hold:
1. Ifa < x < b then 0 < hi(z,a) < hg(b,a);
2. For a < b we have 0 < hi11(b,a) < (b — a)hy(b,a).

Now, we introduce a useful result, which is well-known in the literature as Taylor’s formula
with the integral remainder.

Lemma 2.2 [1]. Assume f € C],(T) and xg € T. Then for all z € (a,b) we have

flx)=T,—1(f,x0,2) + Rr—1(f, z0, )

where T, _1 (f, zg,-) is Taylor’s polynomial of degree r — 1, that is,
Tr—1(f, o, ) thl‘l‘o " (x0)
and the remainder can be given by

RT lfam(]y /hr 1'1:0- fAT()

We have the Montgomery identity which is stated in the following lemma.
Lemma 2.3 [8]. Let a,b,s,t € T, a <band f: T — R be differentiable. Then

b b

~
=
I
S
|
S
—~
=
g
V)
+
S
s
=
~
VA
—
>

where
s—a, fora<s<t,
p(t,s) =
s—b, fort<s<b.
3. Main results
Let 1 <m,nand 1 <p< oo, 0<a; <1satisfies Y- ;a; =1. Foreachi=1,...,n, let

a < x; <band we cons1der the following condition

Hi(xl,xg, ce ,l‘n) = hi+1(b,a) (VZ = 1,2, N 1 1), (31)
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where H;(x1,x2,...,2,) = (b—a) Y p_; axhi(xg, a), and

b n Ty
/ B, 0(8) A — (b— ) 3 / b1 (21, (1)) At = 0. (3.2)
a =1y

We point out the fact that in the continuous case T = R and oy = ... = a, = %,

conditions (3.1) and (3.2) become

Ny 1
l;y;“:z‘—kl (Vi=1,2,...,m),

where x; = a + y;(b — a). Before stating our main result, let us introduce the following
notations.

b n
10) = [ 1@ 80, QUnmosr...m) = (b-a) - af (x) (33)
2 i=1
Note that, for the case a1 = ... = a,, = % then

n

1
Q(f?namaxlw" 7:En) = E(b_ Q)Zf(a+y2(b_ a))
i=1
are also known in |5, 6]. Now, we slightly improve |5, 6] with weights aj on time scales:

Theorem 3.1. Let a,b € T and f € C(T). Then, under conditions (3.1) and (3.2), we
have

|I(f) - Q(fvnvmvmlv s axn)| < 2(b - CL)2(T - S)hm—l(bv a)?
where s = infyeqo ) f27 (2), T = (F5"7 (8) = 2" (@))/(b — a).
< Let us first define

F(m):/xf(a;)Aaf

Then I(f) = F(b) — F(a). Applying Lemma 2.2 to the function F(x) with = b and z¢ = q,

we get
b

F(b) = F(a) + f: hi(b,a)FA (a) + / B (b, (1)) FA™ (£) At
k=1 2
which yields that
m—1 b
1) = 3 ha(ba)f> @)+ [ bo(byo(e) 127 () A, (3.4)
k=0

a

For each 1 < i < n, applying Lemma 2.2 again to the function f(x) with z = z; and g = a,

we get
T

hi(z,0) £ (a) + / Bm—1 (i, o () f2" () At.

a

[y

flzi) =

k=0
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By applying to i = 1,...,n and then summing up, we deduce that

n n m—1

Zaif(l'i): Zazhk T, a fA +Z/042 m— 17327 )fA ()
=1 i=1 k=0
m—1 n
= Oézhk Zi,Q +Z/az m—1 xza )fAm()
k=0 =1
m—1
= 2 biaHk(l‘l,l‘Q, fAk +Z/O&z m—1 l‘z, )fAm( )
Thus,
Q(f,n,m,x1,...,zp)
m—1 .
= Hy(zy,29,...,2 )fA b—a Z/azmll'u )fA (t)A
k=0

Then it follows from condition (3.1) that

Q(f,n,m,x1,...,zy)

m—1
= kk—i—l(baa)f b—a Z/az m—1 xz, fAm() (35)

0

b
Il

By (3.4), (3.5), we obtain that

‘I(f)_Q(fanamal'la“wl'n)

1/b (b, o (0 F2" (8) At — —az/azmlxz, ()75 1) a1

a

Then, by using condition (3.2), we have

'I(f)_Q(fanamvl'l)"'?mn)

(3.6)
'/h (b, (O FA" () — 5] AL — (b—a Z/az (DA™ () — 5] At
We estimate the first term of (3.6) as follows
b b
| [ .0 )" 0) = 5] 1] < h0) [10270) = 5] ¢
a a (37)

= han(b,0) (f27(0) = 27 (@) = (b — a)
= (b—a)hp(b,a)(T — 5) < (b — a)*hy_1(b,a)(T — s).
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For the second one, we first have
b

'/aihm_l(aji,a(t)) [fAm(t) - 3] At' < hm_l(xi,a)/ [fAm(t) - 3] At
= 1 (i, @) (FA7 (0) = A7 (@) = s(b— @) < (b— a)hm_1 (2, a)(T — 5).
Hence, summing up the above inequalities with ¢ = 1,2, ... n, using the Proposition 2.6, it
implies that

/ uhn-a (o) [ 127 () = ] At'

n

b0

< (b —(l T—s Zazm 1(zi,a) = (b—a)(T — s) him (b, a)
< (b —a)X(T = 5) hyp_1(b, a).
Combining relations (3.6), (3.7) and (3.8), we conclude that

I(f) = Q(f,nym,zy, ... wn)| < 2(b— a)*(T — 8) hyp—1(b, a)

and the proof of Theorem 3.1 is now completed. >

With the similar arguments as those used in the proof of Theorem 3.1, we also obtain the
following theorem.

Theorem 3.2. Let a,b € T and f € C(T). Then, under conditions (3.1) and (3.2), we
have

1(f) = Q(f,nymy 2y, )| <200 — a)*(S = T)him-1(b, a),
where S = sup,¢(q) A" (2), T = (fAmﬂ( b) — fA'm 1(a))/(b _a).
Since s = inf¢[q A" @) < T =% f A" (2 < SUPgela,p] 2" (z) = S, we have the
following corollary.

Corollary 3.3. Let a,b € T and f € C/7(T). Then, under conditions (3.1) and (3.2), we
have

L(f) = QUf nomy iy, an)| < 2(0 = @)*(S — 8)hm—1(b, a),
where S = sup,¢(q) A" (x),s = inf e, A" (x).
Now, we will give a new quadrature formulas with weight involving n points and L, norm
m-th derivative on time scales.

Theorem 3.4. Let 1 < p < o0, a,b€ Tandlet f € C(T). Then, under conditions (3.1),
we have

1(f) = Q(f.nm, @1, )| < 2hin-1(b,a) (b— a) D/ A7),
where % + % =1.
<1 We have known that
I(f) _Q(fanamuwlw”vl.n)

'/b m(b, () FA" () At — (b—a Z/al o)A (1) A (3.9)

a
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The first term of (3.9) can be estimated by using the Holder inequality as follows

b 1/q , b 1/p
< ([ [rmteaton]”ae) ([ 0] o)

b 1/ , 4 1/p
<t [ac) ([ [0) a0) " <ty 6= 0155,

a a

' /b han (b, o)) f2™ (2) Az

(3.10)

< hii(bya) (b — a) /9| A7,

Similarly, we deduce since z; € (0,1) and the Holder inequality that

‘ﬁaihm_l(mi?a(t))fm w At' S ai<7[hm—1(l‘z‘70(t))]q At>l/q<7|fA7"(t)|p At) l/p

b 1/q b 1/p
<hm_1<xi,a>< / At) ( / |f“”<t>|w) = (i) (b — )Y [ A7

Now, applying the above inequalities with ¢ = 1,2, ... ,n, we get

b—a))_

1=1

T

[ bt oo @ At\

a

— (b— g)@tD/a) pam - h . (3:11)
(b—a) 1F2" - it (i, a)
i—1

= hm(b,a) (b—a) U [| FA" |y < hyn—1(b,a) (b — a) T2 || FA™ .
Relations (3.9), (3.10) and (3.11) imply that

I(f)— Q(f,n,m,xy,...,2)| < 2hp-1(b,a)(b— a)(q-f—l)/q HfAm”p

and thus Theorem 3.4 is completely proved. >

Next, we define the Chebyshev functional on a time scale by

b b b
Ta(f.0) = 5= [ H@lole) Ao = =z [ 1) A [ g(o) A

a a

Then

Ta(f, f) = ﬁ/bf%)m— ﬁ(/bf(x)my

We also define oa(f) = (b — a) Ta(f, f). Then, it should be noticed that in [15], N. Ujevi¢
obtained the following result for the case T = R: Let f : [a,b] — R be an absolutely continuous
function, whose derivative f € La(a,b). Then it holds that

)3/2

) 10 —/bf<t>At' < Bl

2

b—a
6

[f(a) + 4f(
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In this article, base on the result of N. Ujevi¢ we will give a new quadrature formulas with
weight involving n points and m-th derivative on time scales by using Chebyshev functional.

Theorem 3.5. Let a,b € T and let f € C™(T) be such that f>™ € L?(a,b). Then, under
conditions (3.1) and (3.2), we have

1(F) = QU w1,y 2a)| < 21 (b, @)y (b — a)oa (FA7).
<1 We have known that

I(f)_Q(f,n,m,wl,...,l'n)

'/h (b, o () fA" (t) At — (b —aZ/almlxz, ) f2" (t) At ‘

Then, by using condition (3.2), we have

1(5) = QUf.nm, 1, )

b n Ti
=| [ e[ 1] At = 6= Y- [ sl o)) - 11 A
a =17

(3.12)

where T = (f2" 7" (b) — f2™ " (a))/(b— a). The first term of (3.12) can be estimated by using
the Holder inequality as follows

b

‘ / (b ()[4 (1) 7] At

a

b

< (/b [hm(b,a(t))rAt)l/z(/ [fAm(t)—TrAt)l/z

a a

b 1/2
< hm a</ fA’” At) .

Combining this with the fact that

b b

b
/[fAm(t)—TrAt:/[fAm(t)rAt—QT/fAm(t) At + (b— a)T?

a a
b

_ /b IS0l At_b%[ / 27 () AtrzoA(fM)

a

we obtain that

< hanlb,0)\/ (b — a)oa (A7)

b
/ i (b, 0 (1) [F2" (1) — T)AE
J (3.13)

< (b= a)hun-1(b,a)y/ (b — Q)oa(FA™).
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Similarly, we deduce since z; € (a,b) and the Holder inequality that

‘ 7C¥ihm—1($i70(t)) [fAm(t) - T] At'

) "‘(/ RCRIIES) m( / 1570 - T ) "

a a

b 12 , b ) 1/2
<tnartoa)( [a) ([0 -1]"80) T <o avi=ayoalrA),

a a

Now, applying the above inequalities with ¢ = 1,2, ... ,n, we get

(b—a)z

i=1

= (b~ a)oa(FA™) S aihun1(21,0) = hon(b,0)/ (b — a)oa(F2™)
i=1

Z5

/Oéihm—l(l’i, o(t)) {fAm(t) - T} At‘

(3.14)

< (b= a1 (b,a)y/ (b — )oa (FA™).
Relations (3.12), (3.13) and (3.14) imply that

‘I(f) —QUfinym, . wg)| < 2b— )i (b,a)y/ (b~ @)oa(FA7)

and thus Theorem 3.5 is completely proved. >

Base on the inequality in (1.1), by using some simple estimations, we obtain some new
quadrature formulas involving n knots on time scales: For 0 < z; < 1, a+ z;(b—a) € T, we
put

QU 1,2 n) = = 3 flat b a))
=1

The next result of this paper can be described as follows.

Theorem 3.6. Let a,b €T, a <b, f: T — R be differentiable, and assume that f* is
rd-continuous such that fA € L2(']I‘). Then for 0 < z; < 1 with Z?:l r; = 5 we have the
following estimate

Q(fal'hl?)'"al’n)_

< /(b= a)oa(f?).

b
/fa(l")Aiﬂ+M/l,u(s)As

< Put t, = a + zi(b — a), then it follows from Lemma 2.3 that

b—a

b

flatalb—a) — 5 / £ (@) A = /pak,s)fA(s)As

b

S O TS N S

a
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Since
/b (t,S)AS:/t(s—a)As—l—/b(s—b)As
/b<3+ (s ) /b%,u(s)As—a/tAs—b/bAs
b2 _ 2

_ _/% (5)As — at — a) — b(b—t):(t—a;rb>(b—a)—/b%u(8)As,

we deduce that

Flat mulo—a)) - — /b ro(e)ae = [atans) [ 120 - L= s

b
e [ O B ETOIY
Hence,
1 / / 1
fla+z,(b—a)) — bf/f (x)Ax + f(( )__af)(;) /5 wu(s) As
b
=i o) [ 720 - OO ask 70) - 160 (- 5).
By applying to k =1,..., n and then summing up, since ) ), x;, = 5, we obtain that

b
]‘;(2&) % wu(s) As

b
1 o f(b) -
b—a/f (x) Az +

- /b pltnes) [ 720 - LOZLO ) s

k=17

Q(f, 1, 22,...,2n) —

We first observe that
b

/b [fA(S) N f(bl)):a<a)rAs - /b [fA(S)rAS‘ bia [/fA(S) Asr = oa(f?),

which yields

o ase SB[ Lo
<n(b% [(/[ptk ) 2As> (a/[fA(S)_f(bl)):i(a)]2A3>%:|

‘Q(f 1, T2,
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_amzu oo s
_a\/72</b—a S)Z (b— a)oa(f2)

The proof of Theorem 3.6 is now completed. >
Theorem 3.7. Let a,b € T and f € C!(T). We also let v = infyer f2(z) and T =
f(b) ( ) Then for 0 < x; <1 with 2?21 x; = 5 we have the following estimate

b b

Q(f?'rlvw?a"'vwn)_ ! /f”(x)Aa?—l—ﬁ/%,u(s)As

a a

<(b—a)(T —7).

< Put t, = a + zi(b — a), then it follows from Lemma 2.3 that

b b
flatab—a) - ;= [ @ do= 2 ol o) eas
) b ’ ) b
=3 | Pl ){fA( ) — } As+ o— [ plty, s)v As.

Combining this with the fact that

ijﬁszc—“;b>@—ay—j%M@As

we get
fa+ @b — a)) biajf%@Ax
= b%/bp(tk, W (s) =] As—l—f[(b—a)Q <xk—%> +/b%,u(s)As}
Hence, a , a
fla+z(b—a)) /f” A:z:—i——/%u(s)As
b
1 1

=i [P 726 ) as + 170) - @) (- 3)

a

and then by >,z = & that

Q(fa$17x27"'7xn)_ ! /fo—(x)Al‘"_ﬁ %/J(S)AS
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p(tr, s)[f2(s) — 7] As + [f(b) — f(a)] Z(b —a) <xk — %)

k=1

|

S

—

S

| Ll
s}

~—

3

Q\@

b
__ 15 Arg) —
=D / plti,5) [FA(s) — 7] As.
Hence,
/ 1
'Q(f7$17x27"'7 _a/fa AIZ‘+— §M(S)AS

a

#" —a)[f2(s) — s=(b—a)(T -
sn(b_a);a/w )[F2(5) = 7)As = b= )T =),

The proof of Theorem 3.7 is now completed. >

With the similar arguments as thosed used in the proof of Theorem 3.7 we also conclude
the following result.

Theorem 3.8. Let a,b € T and f € CL(T). We also let I' = sup,cp f2>(2) and
T = w. Then for 0 < x; < 1 with Y7 | x; = § we have

b b

QUfsr, s ) — — /f"(fv) Az + La/lmsms

b—a

a a
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HEPABEHCTBA J1J1{1 HEKOTOPBIX HOBBIX
KBAJZIPATYPHBIX ®OPMYJI C BECOM

Syuar ©. T., Yynar H. T., 3yit B. H.

B macrosimeit pabore 0606mmensr HepaBencTBa OCTPOBCKOTO HA TIKAJ€ BPEMEHH ISt N TOYeK U Lp-HOpM
m-it mpomsBomHOi, Tae m,n € Nu p € [1, +0o0].

KuarodyeBrbie ciioBa: HepaBeHCTBa OLIMOOK, 1 y3JIbl, MKAJIA BPEMEHH.



