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Abstract. In our present study we consider Janowski type harmonic functions class introduced and
studied by Dziok, whose members are given by h(z) =z + Y oo, hn2" and g(z) = > .2 | gnz", such that

STu(F,G)={f=h+geH: 2= < 2 (_G < F < G <1, with g1 = 0)}, where Dp f(2) =

2h/(2) — 2¢’(2) and z € U = {# : z € C and |2] < 1}. We investigate an association between these
subclasses of harmonic univalent functions by applying certain convolution operator concerning Wright’s
generalized hypergeometric functions and several special cases are given as a corollary. Moreover we
pointed out certain connections between Janowski-type harmonic functions class involving the generalized
Mittag—Leffler functions. Relevant connections of the results presented herewith various well-known results
are briefly indicated.
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1. Introduction

A continuous complex-valued function f = u+ iv defined in a simply-connected domain D

is said to be harmonic in D if both u and v are real harmonic in D. In any simply-connected
domain D, we can write f = h + g, where h and ¢ are analytic in D and are commonly
denoted by H. In 1984 Clunie and Sheil-Small [1] introduced a class .5 of complex —
valued harmonic maps f which are univalent and sense — preserving in the open unit disk
U={z:2z¢€ Cand |z| < 1}. The function f € .#5 can be represented by f = h+g, is given by

F@)=h(z) +9(z) =2+ Y haz"+ ) gu2",
n=2 n=1

where

hz)=z2+> ha2", g(z) =D guz" ol <1 (1.1)
n=2 n=1
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are analytic in the open unit disk in U. They also proved that the function f = h + g € 1
is locally univalent and sense preserving in U, if and only if |h/(2)| > |¢'(2)|, Vz € U. For
more basic study one may refer Duren 2] and Ahuja [3]. It is worthy to note that if g(z) =0
in (1.1), then the class . reduces to the familiar class . of analytic functions. For this class
f(2) may be expressed as of the form

flz)=z+ Z hn2". (1.2)
n=2

Further, we suppose that . I(} subclass of . consisting of function f € % of the form (1.1)
with g1 = 0 and is given by

F@)=h(z) +9(z) =2+ haz"+ ) gn2™,
n=2 n=2

where

h(z) =z+ Z hnzna g(z) = Zgnzn7 g1 =0.
n=2 n=2

Now, we let JZ; 19, ST % and (5}} denote the subclasses of Ylg of harmonic functions which
are respectively convex, starlike and close-to-convex in U. Also let 73 be the class of sense
preserving, typically real harmonic functions f = h + g in .. For detailed study of these
classes one may refer to |1, 2.

Now, we recall the subclass # of .# consisting of functions f = h + g, so that h and g
are of the form

h(z)=2z=_|halz" and g(z) = |gnle", (1.3)
n=2 n=1

which has been introduced and studied extensively by Silverman [4].

Let a; € C, ((a;/A;) #0,—1,-2,...; 1 =1,2,...,p) and ((b;/B;) # 0,—1,—-2,...;1i =
1,2,...,q),for 4; >0(i=1,....p), Bi>0(i=1,...,q) with 1+ >7 B, =% A >0
the Wright’s generalized hypergeometric functions [5] is defined by

p
oo I T(a;+nd;)z"

o, [ (Z’:’g’:)l’p ; Z] _ Z z:ql , (1.4)
(bi, Bi)1,q n=0 [] I'(b; + nB;)n!
=1

which is analytic for suitable bounded values of |z| (see also [6, 7]). The generalized Mittag-
Leffler, Bessel-Maitland and generalized hypergeometric functions are some of the important
special cases of Wright’s generalized hypergeometric functions and for their details one may
refer to [7-9].

For 4; >0(i=1,...,p),B;>0,b;>0(i=1,...,q) with 14+ >0 B, —>% A, >0
and C; > 0 (Z = 1,...,7“), D;>0,d; >0 (i = 1,...,8) with 1+Zf:1Di_z;:10i >0, we
define Wright’s generalized hypergeometric functions

[ S

—_

I'(a; + nA;)z"

(ai, A1y | =i
Pl [ (b, Bi)ig 7] 2

n=0

e

1

-
Il
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and
oo [ T(e; +nC;)z"
(i, Cihgr | i=1
r¥s [ (di, Di)1,s : _Z s
i=1
with

<1

l:[ll“(lcz'l +nCi)/Teil

=1

We consider a harmonic univalent function

§(2) = 9(2) + &(2) € L,

where .
i i Ai n
B ==, | B a3,
H F(CLZ) iy D1)1,q )
i=1
and
le(di) (c 0)1 >
(’5(2) =0z Z_r Py |: (dz.’DZ_)17T : Z:| =0 Z(n Zn’ |U| < 1,
H F(CZ) 1, i)1,s —
i=1

and 0, and (, are given by

ﬁ[ T(a; + (n— 1)A5)/T(as)

0, = . i=1
_l;Il(F(bz + (n—1)B;)/I'(b;))(n — 1)!
and .
H I(c;+ (n—1)C) /T ()
(n = s =1 .
l;[l(T(dz' + (n—1)D;)/T(d;))(n — 1)!

From (1.9) and (1.10), we have forn e N={1,2,...}

11 T(Jasl + (n — 1)4)/T(Jai])
‘Hn’ < q =1 =Up
T+ (0= DB)/Tb)(n— 1)
and .
[T T(leil + (0 — 1)C)/T(ex)
|Cn| < S =1 = n-
[T(C(d; + (n — 1)Dy)/T(ds))(n — 1)!

i=1

(1.6)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)
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For some fixed value of j € Ng = NU {0} and for
q p s T
1187 =114" [Ip"’=]]cs
i=1 i=1 i=1 i=1
we denote

(lai| + 7 Ai, Ai)1p } ‘ [ (leil +4Ci, Ci) 1 } j
v s Pl =07, U ) Tl =,
P q[ (|bil + jBi, Bi)1,4 Prar T (Idi] + 3Dy, Di)1s T

provided that

q p s r

p—q _ 1 r—s 1
_Elbi_§1|ai|+T>§+J’ Eldz‘—§1|cz‘|+T>§+J-
1= 1= 1= 1=

Making use of (1.11), (1.12) and (1.13), we have

00 H P(bi)
Z (n—j)jvn = Zp:1 7z
=t 117 (ei)
and .
“ T r(d)
S (- )y = W
e 11 T(la)

provided that (1.14) holds true.
The convolution of two functions f(z) of the form (1.1) and .#(z) of the form

F(z) =2+ Zhnz" + Zgnz"
n=2 n=1
be given by
(f*Z)(2) = f(2)* F(2) =2+ Z hphy, 2™ + Zgngnz".
n=2 n=1

Now, we introduce a convolution operator (p, q,r,s) as

Qp,q,r,8)f(2) = f(2) % 3(2) = h(z) * H(2) + g(2) * &(2),

where f = h+ g and §(z) = H(2) + B(2) given by (1.1) and (1.6) respectively. Hence

Qp,q,m,8)f(2) =2+ Z Ophn2™ + Z Cngnz".
n=2 n=1

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

We consider the following classes of functions due to Dziok [10]. Let ..7 ,»(F, G) denote

the class of functions f € .#5 whose members are given by (1.1), such that

Duf(z) . 1+Fz
f(2) 1+G=z’

ST u(F,G) = {f:h+g c€H:

(-GS F<G<1, with g :o)}, (1.21)
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where D f(z) = zh/(2) — z¢'(z) and z € U, where H denote the class of harmonic functions
in the unit disc U.
Moreover, let us define

CVu(F.G):={feSTy: DufeSTu(FG)}.
We should notice that the class
ST (F.G)=STuyF,G)Nd
was introduced by Janowski [11]. The classes
S Tala) =STga—1,1) and €V p(a) =€V n(2a—1,1)
were investigated by Jahangiri [12, 13] also see [4]. Finally, the classes
S Ty =ST0) and €V :=€¢7V u(0)

are the classes of functions f € .y which are starlike in U and 7 y(F,G) C /T q,
€V u(F,G) CEVy.
Lately, Dziok [10] gave the following necessary and sufficient coefficient condition for
feSTu(FG).
Lemma 1 [10]. Let f € H be assumed as in (1.1), then f € /T y(F,G) if
Y ((n(1+G) = L+ F)]|hn| + [n(1 + G) + (1 + F)]|gn]) < G - F, (1.22)
n=2
where by =1, g1 =0 and (-G < F <G < 1).
Lemma 2 [10]. Let f € H be assumed as in (1.3) and f € .7 (F, Q) if and only if

[e.e]

Z ((n(1+G) = (1 + F)]|hn| + [n(1 4+ G) + (14 F)] |gn|) < G = F, (1.23)

n=2
where hy =1, g1 =0 and (-G < F <G <1).

REMARK 1. In [10], it is also shown that f = h + g be given by (1.3) is in the family
S TH(F,G), if and only if

i[n(l +G) — (L+ F)] |ha| + i[n(l +G)+ (1 + F)llgn| <G - F, (1.24)
n=2 n=1

where by =1, |g1] <1l and (-G < F <G < 1).
Moreover we note that, if f € 7 y(F,G), then

G-F s G-F
1+G) - (1+Fy "2 ™

The application of the special functions on Geometric Function Theory always attracts
researchers various kinds of special functions for example hypergeometric functions [14-16],
confluent hypergeometric functions [17], generalized hypergeometric functions |5, 18]. Wright
functions [19-22|, Fox-Wright functions [5, 23], Mittag-Leffler functions [24] generalized
Bessel functions [25|, have rich applications in analytic and harmonic univalent functions.
Motivated with the work of [21, 26, 27|, we obtain some inclusion relation between the classes
ST u(F,G), #Y, and ST, or %}y by applying he convolution operator (2.

> 1.

hn< n< ) =
ol < 3 wl < T arar e "
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2. Mapping Properties of H Related with Convolution Operator )

In order to establish our main results we shall require the following lemmas.
Lemma 3 [1]. If f = h + g € 9, where h and g are given by (1.1) with g, = 0, then
n+1 n—1
- - < .
5 |gnl B

Lemma 4 [1]. Let f = h+g € YT or €}y, where h and g are given by (1.1) with
g1 = 0. Then

lhn| <

(2n + 1()5(71 +1) and |gn| < (2n — 1()5(71 - 1)‘

Theorem 1. Let >7 b — Y0 lag| + B2 > 3 and 35, di — Y0 |ei| + 52 > 3,
the inequality

lhn| <

1)
S {1+ G)p Wi+ (344G — F) 0l +2(G - F) (95— 1)}
T I'(Jail)
=1 . (2.1)
I1 (i)
o e {1+ G), 92+ (3+2G + F), 0!} <2(G—F)
_l;IlF(!cz-!)

holds. Then Q(#Y) C ST u(F,G).

< Let f=h+ge€ #Y, where h and g are given by (1.1) with g; = 0. We have to prove
that Q(f) € ST u(F,G), where Q(f) is defined by (1.20). To prove Q(f) € T y(F,G), in
view of Lemma, 1, it is sufficient to prove that P; < G — F, where

Pr=> [n(14G) = (14 F)]|6nhn] + > [n(1+G) + (1 + F)] [{agnl- (2.2)
n=2 n=2

By using Lemma 3

P <

DO =

[Z(n +1) A+ G) = L+ )]0 + > (n=1) [n(1+G) + (1 + F)] ¢l

n=2 n=2

1 o
= LZ:Q{(TL—1)(n—2)(1+G)+(n—1)[3+4G—F]+2(G—F)}Vn

+% g{(1+G)(n—2)+(3+2G+F)}nn
| ILT:)
=5 |5 {0+ G+ B+4G - Fl, ¥ +2(G - F) (¥ - 1) }
ZIZTIF(!ai!)
11 ()
o) {1+ @), 92+ (3+2G + F), ¥} | <G-F
_l;IlF(\Ci!)

by the given hypothesis. This completes the proof of the Theorem 1.
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The result is sharp for the function

A(z):z+§:<n;1>z”—§:<n;1>2". >

n=2 n=2

Theorem 2. Let 30 b = SP Jai| + 552 > L and Y0, di — S0, |ei| + 552 > L. If

the inequality

[T (ki)
L {2(1+G) VS + (15G + 2F +13) , W2 + (24G — 9F + 15) , ¥}
AilF(!az‘!)
s 2.3
11 () 23)
+6(G—F)(,00— 1)} +|o| Z——{2(1 + G) , U2 + (9G + 2F + 11) V2
T C;
2131 (leil)

+3(2G+F+3),V.} <6(G—F)

holds, then QU7 TY) C ST »(F,G) and Q€Y C ST y(F,G).

<dlet f=h+ge ST (or,€Y), where h and g are given by (1.1) with g; = 0, we need
to prove that Q(f) € T y(F,G), where Q(f) is defined by (1.20). In view of Lemma 1, it is
sufficient to prove that P, < 1 —~y, where Pj is given by (2.2). Now using Lemma 4, we have

p<l [Z<n+ D@0+ D[+ G) — (1+ F)] 6] + ol 30— 1)(20 — 1)
n=2 n=2

¥ [n(1+G)+ 1+ F)|Gal| = é [Z {200+ G)(n - 1)(n—2)(n — 3)

+ (15G + 2F +13)(n — 1)(n — 2) + (24G — 9F +15)(n — 1) + 6(G — F)} v,

+ % nZZ {20+ G)(n—1)(n—2)(n —3) + (9G + 2F + 11)(n — 1)(n — 2)
1 12[ L'(bi)
+(6G+3F +9)(n—1)} nn] =5 ;17 {2014+ G)p¥3 + (15G + 2F +13) , 0
ljlf(\az!)
o] f[ I'(ds)
+(24G — 9F + 15) , U} + 6 (G - F) (, 19 - 1)} +5 =L 21+6),v8
,l;Ill“(lcz-l)

+(9G +2F +11),92 +3(2G+ F +3),¥.}| <G - F

by the given hypothesis. Thus, the proof of Theorem 2 is established.
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The result is sharp for the function

~1.2,1.3 1,2,1.3
22z+62 22—{—62

TO === T a=p

In our next theorem, we establish connections between .7 g (F, G).
Theorem 3. Let 3¢ b; —S°% Jai| + 552 > 3 and 7 di — S0 |ei| + 52 > 5. If
the inequality

S (U 1) o] 0l <1 (2.4)

i=1 i=1
holds, then (/T y(F,G)) € ST u(F,QG).
< Let f=h+ge STu(F G) be given by (1.1) with |g1| < 1. We have to prove that
P, < G — F, where

Py=> [n(1+G) = (L+F)||0n hal +|0] D n(1+G)+ (1 + F)][Gugnl. (25
n=2 n=1

Now, using Remark 1, we have

B<(G=F)Y vn+(G-F)od n,
n=2 n=1

[1T(b:) 1 ()
=(G-F) | Z— (W) - 1) +|o| ZH— W | <G-F
I1 (Ja:)) [T T(Jesl)

by the given hypothesis, this completes the proof of Theorem 3.
The result is sharp for the function

> G-F e G-F _n
f(z)zz_z<n(1+G)—(1+F)>‘x"‘z +nzl<n(1+G)+(1+F)>’y"‘z ’

n=2
where
o0 o0
Z |xn| +Z |yn| =1 >
n=2 n=1

3. Some Consequences Related with Mittag-Leffler Functions

Ifwelet p=¢g=r=s=1and a; = A; =c¢; =C; =1 1in (1.6), then W(z) reduces to a
harmonic univalent function E(z) involving the following generalized Mittag-Leffler functions
as

E(z) = 20(b) By, [2] + 020(d1) By, [2], (3.1)

where
n

1,1) > 2
ELl — \I] ( ) . —
bl,Bl [Z] 1 1 |: (bl,Bl) ’Z:| nZ:OP(bl +nBl)
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and

e} n

L1 | _ ?
Eclthl[ J=1" [ (di,Dy) Z} N Z%F(dl +nDy)’

With these specializations, the convolution operator (p,q,r,s) reduces to the operator
®(by; By;dy; D), which is defined as

®(bi; Biidi; D1) f(2) = f(2) *E(2) = h(z) 2D (01) By g, [2] + 09(2) * 2T (d)Ey p [2]. (3.2)

For these specific values of p=q=r =s=1and ay = A; = ¢y = C; = 1, Theorems 1-3
yield the following results.
Corollary 1. If the inequality

P(b) {(1+ G B}y, 5, () + B+4G = FYEY (1) +2(G = F) (B, — 1) }

(3.3)
+|o|T(dy) {(1 +Q)EY b (1) + (342G + F)EE, D1(1)} <2(G - F)

holds. Then ®(#)) C ST »(F,G).

Now, we state new inclusion results for Janowski-type harmonic functions due to Dziok [10]
without proof.

Corollary 2. If the inequality

L'(b1) { (1+G)E b1+331 5, (1) + (15G + 2F + 13) E‘Z 1+231 B (1)
+(24G — 9F + 15)EprY, 5 5 (1) +6(G — F)(Ey 1)} (3.4)
+1o|T(d) {2(1+ GV EfLap, p, (1) + (0G +2F + 1) E} 5, ), (1)
+3(2G + F +3)EZ, . D1(1)} <6(G—F)
holds. Then ®(7Y) € T y(F,G), and ®(CY,) C ¥ T u(F,G).
Corollary 3. If the inequality
T'(by) {(E;;{Bl - 1)} +|o| T(dy) (Ecll;{Dl) <1 (3.5)
holds. Then ®(.# 7+(F,G)) C & T u(F, Q).
REMARK 2. If weputp=g=r=s=1,a1=c;1 =1, Ay =C; =0and o =1, then

_ . F(bl) N > (dl)
V(z) = +n§ (b1 + Bi(n — 1))(n — 1] +nzl T(d, + Di(n — 1))(n — 1)!

Zn

and results of Theorems 1-3 gives to new inclusion results for Janowski-type harmonic
functions due to Dziok [10].

REMARK 3. If weputp=r=2,gq=s=1land A1 =4, =B =C;=Cy=D;=1and

o =1, then
CLlnlain Cln102n1
=z+ "+ 2"
Zb1nln—1 Zdlnln_l)
and results of Theorems 1-3 yields the new results for the subclasses of Janowski-type
harmonic functions due to Dziok [10].
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REMARK 4. By taking FF = 2o — 1 and G = 1 one can get the inclusion results for
the subclasses . 7 p(2a — 1,1) = ST g(a) and €Y g(2a — 1,1) = €V () defined and
studied by Jahangiri [12, 13].

CONCLUDING REMARK. By defining

CVu(F,G) = {f €S Ty:Oufe ng(F,G)}
due to Dziok[10] as in Lemma 1 we state the following result: A function f € €%Y (F,G) if

S <n(1 + g)_—ﬁg HE) g)jﬁ(} +F) W) . 56

n=2

where hy = 1; g1 =0 and (—G < F' < G < 1). Proceeding as in above results we can obtain
analogous inclusion results for the function class €7 Y (F,G) we left this as an exercise to
interested readers.

Acknowledgement. We authors record our sincere thanks to the referees for their valuable
comments to revise the paper in present form.
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BiagnkaBka3zckuii MareMaTHIeCKUH Ky PHAJT
2023, Tom 25, Beinyck 4, C. 91-102

O TAPMOHMNYECKUX ®YHKINI TUIIA THOBCKOTO,
CBS3AHHBIX C TUIEPTEOMETPUYECKUMUI OYHKIIUAMU PAITA

Mypyrycynmapamypru I.1, TTopyan C.2
! IIkona mepemosbix Hayk, Texmomormueckuit macTuTyT Bemtopa,
WMunusa, Tamun Hamy, 632014, Besutop;
2 Tocynapcreennsiii Kotk Pam Caxaii,
WNunusa, Yrrap-Ilpagem, 209205, Kannyp, Banpu-Illuspamxmoyp
E-mail: gmsmoorthy@yahoo.com, saurabhjcb@rediffmail.com

Awnnoranusi. B nacrosimeit paboTe MbI pacCMaTPUBAEM KJIACC TAPDMOHIMYECKUX DYHKIN Tra SIHOBCKOTO

)

BBEJIEHHBI M M3y4eHHBIH JI3MOKOM, WIeHBI KOTOPOro 3ajafoTcs dopmynoi h(z) = z + > o0, hn2", g(z) =
> | gnz" TaKoii, uTo

Duf(z) - 1+ Fz
f(2) 1+ G2’

yﬁH(EG):{f:h—i—geH: (—G<F<G<1,g1=o)},

rne D f(z) = 2zh/(2) —29'(2), 2€ U={z: 2z € Cu |z| < 1}. MbI uzyuaem CBA3b Me¥K/ Iy STUMH TIOIKIACCAMMT
rapMOHMYECKUX OJJHOJIUCTHBIX (DYHKIMI, MPUMEHssI ONpPEIEeHHbIH ONEpaTop CBEPTKH, Kacalommiicss 0606-
HIEHHBIX TUIEPreoMeTpudecKux byHKumil Paiita, 1 B KadecTBe CJI€JCTBUS NPUBOJIATCA HECKOJBKO YaACTHBIX
cirygae. KpoMme TOro, Mbl yKa3aju Ha OUPEIEIeHHBbIE CBA3M MEXKy KJIACCOM MapMOHMYECKUX (PYHKIUil THOA
Snosckoro, Biovaomumu obobmennbie dynkiun Murrar-JIedpdepa. Kparko ykasaubl cOOTBETCTBYIONITE
CBSI3U NPEJICTABJIEHHBIX PE3YJIBTATOB C PA3JUIHBIMU U3BECTHBIME PE3YJIHTATAMHE.

Karo4deBble ciioBa: rapMoHndecKue (byHKIMH, OJHOJUCTHBIE (DyHKIMU, 0000IIEHHBIE IUIIEPreOMeTpUuYe-
ckne pyukmuu Paiira.
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