ISSN печатной версии 1683-3414   •   ISSN он-лайн версии 1814-0807
    Войти
 

Контакты

Адрес: Россия, 362025, Владикавказ,
ул. Ватутина, 53
Тел.: (8672)23-00-54
E-mail: rio@smath.ru

 

 

 

џндекс.Њетрика

DOI: 10.46698/p9825-1385-3019-c

Почти сходящиеся последовательности из 0 и 1 и простые числа

Авдеев Н. Н.
Владикавказский математический журнал. 2021. Том 23. Выпуск 4.С.4-14.
Аннотация:
В статье изучаются последовательности из нулей и единиц. Устанавливается связь между значениями верхнего и нижнего функционалов Сачестона на такой последовательности и множеством всевозможных делителей элементов, входящих в носитель такой последовательности. Если объединение множеств всех простых делителей чисел из носителя некоторой последовательности из нулей и единиц конечно, то такая последовательность почти сходится к нулю. Изучаются такие последовательности из нулей и единиц, носитель которых в точности состоит из чисел, кратных элементам некоторого заданного множества, и устанавливаются необходимые и достаточные условия для обращения в единицу верхнего функционала Сачестона на такой последовательности. Доказывается, что существует бесконечно много таких последовательностей, на которых нижний функционал Сачестона принимает значение 1, при этом в нуль нижний функционал Сачестона ни на одной такой последовательности не обращается.
Ключевые слова: пространство ограниченных последовательностей, банахов предел, функционал Сачестона, почти сходящаяся последовательность, последовательности из нулей и единиц, разложение на множители, подмножеcтва натуральных чисел
Язык статьи: Русский Загрузить полный текст  
Образец цитирования: Авдеев Н. Н. Почти сходящиеся последовательности из 0 и 1 и простые числа //  Владикавк. мат. журн. 2021. Т. 23, вып. 4. С. 5-14 DOI 10.46698/p9825-1385-3019-c
+ Список литературы


← Содержание выпуска
 
  | Главная | Редколлегия | Публикационная этика | Рецензирование | Свежий номер | Архив | Правила для авторов | Подать статью |  
© 1999-2022 Южный математический институт