УДК 517.95

A PRIORI ESTIMATE RESULT FOR AN INVERSE PROBLEM OF TRANSPORT THEORY

S. Lahrech

We establish a priori estimate result for an inverse problem of transport theory. We refer to [1], where some existence and uniqueness result are proved.

1. Description of the problem

Consider the following problem :

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\left(v, \nabla_{x}\right) u+\Sigma(x, v, t) u(x, v, t)=\int_{V} J\left(x, v^{\prime}, t, v\right) u\left(x, v^{\prime}, t\right) d v^{\prime}+F(x, v, t) \tag{1}
\end{equation*}
$$

$(x, v, t) \in D=G \times V \times(0, T)$, where $u(x, v, t)$ characterize the distribution density of particles in the phase space $G \times V$ at the moment $t \in] 0, T[$. The absorption coefficient $\Sigma(x, v, t)$, the dissipation indicator $J\left(x, v^{\prime}, t, v\right)$ and the interior source function $F(x, v, t)$ represent the environment where this process moves in. Assume that G is a stricly convex, bounded domain in \mathbb{R}^{n} and assume also that the boundary ∂G of G is of class \mathcal{C}^{1}. Put

$$
V=\left\{v \in \mathbb{R}^{n}: 0<v_{0} \leqslant|v| \leqslant v_{1}\right\}
$$

where v_{0}, v_{1} are two positive reals such that $v_{0}<v_{1}$. Let $\Omega=G \times V, F(x, v, t)=$ $f(x, v) g(x, v, t)+h(x, v, t)$. According to [1], if we give all the characteristic of the environment Σ, J, F as well as the out going flow, i. e.

$$
\begin{equation*}
u(x, v, t)=\mu(x, v, t), \quad(x, v, t) \in \Gamma_{+}=\Upsilon_{+} \times[0, T] \tag{2}
\end{equation*}
$$

where

$$
\Upsilon_{+}=\left\{(x, v) \in \partial G \times V:\left(v, n_{x}\right)>0\right\}
$$

and n_{x} is the exterior normal to the boundary ∂G of domain G at the point x; moreover, if the initial state

$$
\begin{equation*}
u(x, v, 0)=\varphi(x, v), \quad(x, v) \in \bar{G} \times V \tag{3}
\end{equation*}
$$

and the final state

$$
\begin{equation*}
u(x, v, T)=0, \quad(x, v) \in \bar{G} \times V \tag{4}
\end{equation*}
$$

of process are given, then $\exists!(u, f) \in \mathcal{C}_{t,(v, \nabla)}^{1}(\bar{D}) \times \mathcal{C}(\bar{\Omega})$ such that (1)-(4) hold. In other words, there exists a control $f \in \mathcal{C}(\bar{\Omega})$ such that every initial state $\varphi(x, v)$ is controllable to the

[^0]equilibrium state 0 along a trajectory of the system (1)-(2) on $[0, T]$. We first recall some basic functional spaces which will be used later in order to study the continuous dependence of the solution of the problem (1)-(4). So we use the following notations:
$$
\mathcal{C}_{t,(v, \nabla)}^{1}(\bar{D})=\left\{u \in \mathcal{C}(\bar{D}): \frac{\partial u}{\partial t} \in \mathcal{C}(\bar{D}),\left(v, \nabla_{x}\right) u \in \mathcal{C}(\bar{D})\right\}
$$
under the norm
\[

$$
\begin{gathered}
\|u\|_{\mathcal{C}_{t,(v, \nabla)}^{1}(\bar{D})}=\|u\|_{\mathcal{C}(\bar{D})}+\left\|\frac{\partial u}{\partial t}\right\|_{\mathcal{C}(\bar{D})}+\left\|\left(v, \nabla_{x}\right) u\right\|_{\mathcal{C}(\bar{D})} \\
\mathcal{C}_{t}^{1}(\bar{D})=\left\{h \in \mathcal{C}(\bar{D}): \frac{\partial h}{\partial t} \in \mathcal{C}(\bar{D})\right\}
\end{gathered}
$$
\]

under the norm

$$
\begin{gathered}
\|h\|_{\mathcal{C}_{t}^{1}(\bar{D})}=\|h\|_{\mathcal{C}(\bar{D})}+\left\|\frac{\partial h}{\partial t}\right\|_{\mathcal{C}(\bar{D})} \\
\mathcal{C}_{(v, \nabla)}^{1}(\bar{\Omega})=\{\varphi \in \mathcal{C}(\bar{\Omega}):(v, \nabla) \varphi \in \mathcal{C}(\bar{\Omega})\}
\end{gathered}
$$

under the norm

$$
\begin{gathered}
\|\varphi\|_{\mathcal{C}_{(v, \nabla)}^{1}(\bar{\Omega})}=\|\varphi\|_{\mathcal{C}(\bar{\Omega})}+\|(v, \nabla) \varphi\|_{\mathcal{C}(\bar{\Omega})} \\
\mathcal{C}_{t}^{1}\left(\Gamma_{+}\right)=\left\{\mu \in \mathcal{C}\left(\Gamma_{+}\right): \frac{\partial \mu}{\partial t} \in \mathcal{C}\left(\Gamma_{+}\right)\right\}
\end{gathered}
$$

under the norm

$$
\|\mu\|_{\mathcal{C}_{t}^{1}\left(\Gamma_{+}\right)}=\|\mu\|_{\mathcal{C}\left(\Gamma_{+}\right)}+\left\|\frac{\partial \mu}{\partial t}\right\|_{\mathcal{C}\left(\Gamma_{+}\right)}
$$

Let

$$
\alpha(x, v)=\max \{t \in[0, T]: x+v t \in \partial G\}, \quad(x, v) \in \bar{G} \times V
$$

Put

$$
d=\sup _{(x, v) \in \bar{G} \times V} \alpha(x, v)
$$

and assume that $d<T$. Then, according to $[1], \alpha \in \mathcal{C}_{(v, \nabla)}^{1}(\bar{\Omega})$ and $(v, \nabla) \alpha=-1$.

2. Continuous Dependence

We need first a very useful theorem:
Theorem 1. Let X be a Banach space, Y be a normed space. Let also $A: X \rightarrow X$ and B : $Y \rightarrow X$ be two linear continuous operators. Assume that $\|A\| \leqslant q<1$. Then

$$
(\forall y \in Y)(\exists!x \in X) x=A x+B y \text { and }\|x\| \leqslant \frac{1}{1-q}\|B\|\|y\|
$$

The problem is, then, that of controling the system (1)-(4), where

$$
\begin{gathered}
J \in \mathcal{C}_{t}^{1}(\bar{D} \times V), \mu \in \mathcal{C}_{t}^{1}\left(\Gamma_{+}\right), \varphi \in \mathcal{C}_{(v, \nabla)}^{1}(\bar{\Omega}), \Sigma \in \mathcal{C}_{t}^{1}(\bar{D}), h \in \mathcal{C}_{t}^{1}(\bar{D}), g \in \mathcal{C}_{t}^{1}(\bar{D}) \\
0<g_{0} \leqslant g(x, v, 0) \quad(\forall(x, v) \in \bar{\Omega})
\end{gathered}
$$

We now prove that there exists a unique solution which depends continuously on the form of the right-hand side of the problem (1)-(3):

Theorem 2. There is $a>0$ such that if $d<a$ and if the conditions

$$
\begin{gathered}
\varphi(x, v)=\mu(x, v, 0), \quad(x, v) \in \Upsilon_{+} \\
\frac{\partial \mu}{\partial t}(x, v, T)=h(x, v, T), \quad(x, v) \in \Upsilon_{+} \\
\frac{\partial \mu}{\partial t}(x, v, 0)+(v, \nabla) \varphi+\Sigma(x, v, 0) \varphi(x, v)-\int_{V} J\left(x, v^{\prime}, 0, v\right) \varphi\left(x, v^{\prime}\right) d v^{\prime}-h(x, v, 0)=0 \\
(x, v) \in \Upsilon_{+}, \quad \mu(x, v, T)=0, \quad(x, v) \in \Upsilon_{+}
\end{gathered}
$$

holds, then there exists a unique solution $(u, f) \in \mathcal{C}_{t,(v, \nabla)}^{1}(\bar{D}) \times \mathcal{C}(\bar{\Omega})$ of the problem (1)-(4). Moreover, $f / \Upsilon_{+}=0$ and

$$
\|(u, f)\|_{\mathcal{C}_{t}^{1}(\bar{D}) \times \mathcal{C}(\bar{\Omega})} \leqslant c\left(\|\mu\|_{\mathcal{C}_{t}^{1}\left(\Gamma_{+}\right)}+\|\varphi\|_{\mathcal{C}_{(v, \nabla)}^{1}(\bar{\Omega})}+\|h\|_{\mathcal{C}_{t}^{1}(\bar{D})}\right)
$$

where $c>0$.
\triangleleft Put $V=\left\{(u, f) \in \mathcal{C}_{t}^{1}(\bar{D}) \times \mathcal{C}(\bar{\Omega}): u(x, v, T)=0,(x, v) \in \bar{G} \times V, f / \Upsilon_{+}=0\right\}$.
Note that V is a Banach space under the norm $\|(u, f)\|_{V}=\|u\|_{\mathcal{C}_{t}^{1}(\bar{D})}+\|f\|_{\mathcal{C}(\bar{\Omega})}$. According to [1], the problem (1)-(4) is equivalent to fixed point problem $A(u, f)=(u, f)$, where A is an operator from V into V defined by $A(u, f)=\left(A_{1}(u, f), A_{2}(u, f)\right)$, and where A_{1} et A_{2} are defined as follows:

$$
\begin{gathered}
{\left[A_{1}(u, f)\right](x, v, t)=\left\{\begin{array}{c}
\mu(x+\alpha v, v, t+\alpha)-\int_{0}^{\alpha}(P u+f g+h)(x+v(\alpha-\tau), v, t+\alpha-\tau) d \tau \\
\quad \text { if } t+\alpha<T \\
-\int_{\alpha+t-T}^{\alpha}(P u+f g+h)(x+v(\alpha-\tau), v, t+\alpha-\tau) d \tau \\
\text { if } t+\alpha \geqslant T
\end{array}\right.} \\
(x, v)=\frac{1}{g(x, v, 0)}\left[-\int_{0}^{\alpha} f(x+(\alpha-\tau) v, v) \frac{\partial g}{\partial t}(x+(\alpha-\tau) v, v, \alpha-\tau) d \tau\right. \\
\left.\quad-\int_{0}^{\alpha} \frac{\partial(P u+h)}{\partial t}(x+(\alpha-\tau) v, v, \alpha-\tau) d \tau+\theta(x, v)\right]
\end{gathered}
$$

where

$$
\begin{gathered}
\theta(x, v)=(v, \nabla) \varphi+\frac{\partial \mu}{\partial t}(x+\alpha v, v, \alpha)-h(x, v, 0)+\Sigma(x, v, 0) \varphi(x, v)-\int_{V} J\left(x, v^{\prime}, 0, v\right) \varphi\left(x, v^{\prime}\right) d v^{\prime} \\
(P u)(x, v, t)=-\Sigma(x, v, t) u(x, v, t)+\int_{V} J\left(x, v^{\prime}, t, v\right) u\left(x, v^{\prime}, t\right) d v^{\prime}
\end{gathered}
$$

By [1], there is $a>0$ such that if $d<a$, then A^{2} is a contracting operator on V. So $\exists!(u, f) \in V$ such that $A^{2}(u, f)=(u, f)$ and thus, $A(u, f)=(u, f)$.

We now show that (u, f) depends continuously of μ, φ and h. For this, consider

$$
\begin{aligned}
& Y=\left\{(h, \mu, \varphi) \in \mathcal{C}_{t}^{1}(\bar{D}) \times \mathcal{C}_{t}^{1}\left(\Gamma_{+}\right) \times \mathcal{C}_{(v, \nabla)}^{1}(\bar{\Omega}): \quad \frac{\partial \mu}{\partial t}(x, v, T)=h(x, v, T)\right. \\
& \mu(x, v, 0)=\varphi(x, v), \mu(x, v, T)=0, \frac{\partial \mu}{\partial t}(x, v, 0)+(v, \nabla) \varphi+\Sigma(x, v, 0) \varphi(x, v) \\
&\left.-\int_{V} J\left(x, v^{\prime}, 0, v\right) \varphi\left(x, v^{\prime}\right) d v^{\prime}-h(x, v, 0)=0, \quad\left(\forall(x, v) \in \Upsilon_{+}\right)\right\}
\end{aligned}
$$

under the norm

$$
\|(h, \mu, \varphi)\|_{Y}=\|\mu\|_{\mathcal{C}_{t}^{1}\left(\Gamma_{+}\right)}+\|h\|_{\mathcal{C}_{t}^{1}(\bar{D})}+\|\varphi\|_{\mathcal{C}_{(v, \nabla)}^{1}(\bar{\Omega})}
$$

Let us remark that $A(u, f)$ can be written as $A(u, f)=\varrho(u, f)+\beta(h, \mu, \varphi)$, where $(h, \mu, \varphi) \in Y,(u, f) \in V$ and ϱ, β are such that

$$
\begin{gathered}
\varrho(u, f)=\left(\varrho_{1}(u, f), \varrho_{2}(u, f)\right) \\
\beta(h, \mu, \varphi)=\left(\beta_{1}(h, \mu, \varphi), \beta_{2}(h, \mu, \varphi)\right)
\end{gathered}
$$

with $\varrho_{1}, \varrho_{2}, \beta_{1}, \beta_{2}$ are defined by:

$$
\left.\begin{array}{c}
{\left[\varrho_{1}(u, f)\right](x, v, t)= \begin{cases}-\int_{0}^{\alpha}(P u+f g)(x+v(\alpha-\tau), v, t+\alpha-\tau) d \tau, & \text { if } t+\alpha<T \\
-\int_{\alpha+t-T}^{\alpha}(P u+f g)(x+v(\alpha-\tau), v, t+\alpha-\tau) d \tau, \quad \text { if } t+\alpha \geqslant T\end{cases} } \\
{\left[\varrho_{2}(u, f)\right](x, v)=-\frac{1}{g(x, v, 0)}\left[\int_{0}^{\alpha} f(x+(\alpha-\tau) v, v) \frac{\partial g}{\partial t}(x+(\alpha-\tau) v, v, \alpha-\tau) d \tau\right.} \\
\left.+\int_{0}^{\alpha} \frac{\partial P u}{\partial t}(x+(\alpha-\tau) v, v, \alpha-\tau) d \tau\right]
\end{array}\right\} \begin{aligned}
& {\left[\beta_{1}(h, \mu, \varrho)\right](x, v, t)=\left\{\begin{array}{l}
\mu(x+\alpha v, v, t+\alpha)-\int_{0}^{\alpha} h(x+v(\alpha-\tau), v, t+\alpha-\tau) d \tau, \quad i f t+\alpha<T \\
-\int_{\alpha+t-T}^{\alpha} h(x+v(\alpha-\tau), v, t+\alpha-\tau) d \tau,
\end{array}\right.} \\
& {\left[\beta_{2}(h, \mu, \varrho)\right](x, v)=-\frac{1}{g(x, v, 0)}\left[\int_{0}^{\alpha} \frac{\partial h}{\partial t}(x+(\alpha-\tau) v, v, \alpha-\tau) d \tau-\theta(x, v)\right]}
\end{aligned}
$$

We remark clearly that $\varrho(u, f) \in V$ and $\beta(h, \mu, \varphi) \in V$. Note that ϱ is a linear bounded operator from V into V and β is a linear bounded operator from Y into V. On the other hand, reasoning as in [1], we may conclude that if $d<a$, then

$$
\left\|\varrho^{2}\right\|<1
$$

and consequently,

$$
\exists!\left(u_{0}, f_{0}\right) \in V:\left(u_{0}, f_{0}\right)=\varrho^{2}\left(u_{0}, f_{0}\right)+(\varrho \beta+\beta)(h, \mu, \varphi)
$$

and

$$
\left\|\left(u_{0}, f_{0}\right)\right\|_{V} \leqslant \frac{1}{1-\left\|\varrho^{2}\right\|}\|\varrho \beta+\beta\|\left[\|\mu\|_{\mathcal{C}_{t}^{1}\left(\Gamma_{+}\right)}+\|\varphi\|_{\mathcal{C}_{(v, \nabla)}^{1}(\bar{\Omega})}+\|h\|_{\mathcal{C}_{t}^{1}(\bar{D})}\right]
$$

Since the solution (u, f) of the problem (1)-(4) satisfies the condition

$$
(u, f)=\varrho^{2}(u, f)+(\varrho \beta+\beta)(h, \mu, \varphi) \text { and }(u, f) \in V
$$

then $(u, f)=\left(u_{0}, f_{0}\right)$. This completes the proof. \triangleright

Литература

1. Prilepko A. I., Ivankov A. L. // Diff. equation.-1985.-V. 21.-P. 109-119.
2. Prilepko A. I., Ivankov A. L. // Diff. equation.-1985.-V. 21.-P. 870-885.
3. Prilepko A. I., Ivankov A. L. Inverse problems for an equation of transport theory // Rapp. As urss.-1984.-№ 276.-P. 555-559.
4. Iocida K. Functional analysis.-M., 1967.

Received by the editors December 4, 2003.
Samir Lahrech
Morocco, University Mohamed I
E-mail: lahrech@sciences.univ-oujda.ac.ma

[^0]: (c) 2006 Lahrech S.

