УДК 512.555+517.982

A BECKENBACH–DRESHER TYPE INEQUALITY IN UNIFORMLY COMPLETE f-ALGEBRAS

A. G. Kusraev

To the memory of Gleb Akilov on the occasion of the 90th anniversary of his birth

A general form Beckenbach–Dresher inequality in uniformly complete f-algebras is given.

Mathematics Subject Classification (2000): 06F25, 46A40.

Key words: f-algebra, vector lattice, lattice homomorphism, positive operator.

An easy modification of the *continuous functional calculus* on unitary f-algebras as defined in [3] makes it possible to translate the Fenchel–Moreau duality to f-algebra setting and to produce some *envelope representations* results, see [8]. This machinery, often called *quasi-linearization* (see [2, 9]), yields the validity of some classical inequalities in every uniformly complete vector lattice [4, 5]. The aim of this note is to give general forms of Peetre–Persson and Beckenbach–Dresher inequalities in uniformly complete f-algebras.

The unexplained terms of use below can be found in [1] and [6].

 1° . We need a slightly improved version of continuous functional calculus on uniformly complete *f*-algebras constructed in [3, Theorem 5.2].

Denote by $\mathscr{B}(\mathbb{R}^N_+)$ the *f*-algebra of continuous functions on \mathbb{R}^N_+ with polynomial growth; i. e., $\varphi \in \mathscr{B}(\mathbb{R}^N_+)$ if and only if $\varphi \in C(\mathbb{R}^N_+)$ and there are $n \in \mathbb{N}$ and $M \in \mathbb{R}_+$ satisfying $|\varphi(\mathbf{t})| \leq M(\mathbf{1} + w(\mathbf{t}))^n$ ($\mathbf{t} \in \mathbb{R}^N_+$), where $\mathbf{t} := (t_1, \ldots, t_N)$, $w(\mathbf{t}) := |t_1| + \ldots + |t_N|$ and $\mathbf{1}$ is the function identically equal to 1 on \mathbb{R}^N_+ . Denote by $\mathscr{B}_0(\mathbb{R}^N_+)$ the set of all functions in $\mathscr{B}(\mathbb{R}^N_+)$ vanishing at zero. Let $\mathscr{A}(\mathbb{R}^N_+)$ stands for the set of all $\varphi \in \mathscr{B}(\mathbb{R}^N_+)$ such that $\lim_{\alpha \downarrow 0} \alpha^{-1} \varphi(\alpha \mathbf{t})$ exists uniformly on bounded subsets of \mathbb{R}^N_+ . Evidently, $\mathscr{A}(\mathbb{R}^N_+) \subset \mathscr{B}_0(\mathbb{R}^N_+)$. Finally, let $\mathscr{H}(\mathbb{R}^N_+)$ denotes the set of all continuous positively homogeneous functions on \mathbb{R}^N_+ .

Lemma 1. The sets $\mathscr{B}(\mathbb{R}^N_+)$, $\mathscr{B}_0(\mathbb{R}^N_+)$, and $\mathscr{A}(\mathbb{R}^N_+)$ are uniformly complete *f*-algebras with respect to pointwise operations and ordering. Any $\varphi \in \mathscr{A}(\mathbb{R}^N_+)$ admits a unique decomposition $\varphi = \varphi_1 + w\varphi_2$ with $\varphi_1 \in \mathscr{H}(\mathbb{R}^N_+)$ and $\varphi_2 \in \mathscr{B}_0(\mathbb{R}^N_+)$, *i. e.*

$$\mathscr{A}(\mathbb{R}^N_+) = \mathscr{H}(\mathbb{R}^N_+) \oplus w\mathscr{B}_0(\mathbb{R}^N_+).$$

Moreover, $\varphi_1(\mathbf{t}) = \varphi'(0)\mathbf{t} := \lim_{\alpha \downarrow 0} \alpha^{-1} \varphi(\alpha \mathbf{t})$ for all $\mathbf{t} \in \mathbb{R}^N$.

 \triangleleft See [3, Lemma 4.8, Section 5]. \triangleright

^{© 2011} Kusraev A. G.

2°. Consider an *f*-algebra *E*. Denote by H(E) the the set of all nonzero \mathbb{R} -valued lattice homomorphisms on *E* and by $H_m(E)$ the subset of H(E) consisting of multiplicative functionals. We say that $\omega \in H(E)$ is singular if $\omega(xy) = 0$ for all $x, y \in E$. Let $H_s(E)$ denotes the set of singular members of H(E). Given a finite tuple $\mathbf{x} = (x_1, \ldots, x_N) \in E^N$, denote by $\langle \langle \mathbf{x} \rangle \rangle := \langle \langle x_1, \ldots, x_N \rangle$ the *f*-subalgebra of *E* generated by $\{x_1, \ldots, x_N\}$.

DEFINITION. Let E be a uniformly complete f-algebra and $x_1, \ldots, x_N \in E_+$. Take a continuous function $\varphi : \mathbb{R}^N_+ \to \mathbb{R}$. Say that the element $\widehat{\varphi}(x_1, \ldots, x_N)$ exists or is well-defined in E provided that there is $y \in E$ satisfying

$$\begin{aligned}
\omega(y) &= \varphi(\omega(x_1), \dots, \omega(x_N)) \quad (\omega \in H_m(\langle\!\langle x_1, \dots, x_N, y \rangle\!\rangle), \\
\omega(y) &= \varphi_1(\omega(x_1), \dots, \omega(x_N)) \quad (\omega \in H_s(\langle\!\langle x_1, \dots, x_N, y \rangle\!\rangle),
\end{aligned}$$
(1)

cp. [3, Remark 5.3 (ii)]. This is written down as $y = \hat{\varphi}(x_1, \dots, x_N)$.

Lemma 2. Assume that *E* is a uniformly complete *f*-algebra and $x_1, \ldots, x_N \in E_+$, and $\mathbf{x} := (x_1, \ldots, x_N)$. Then $\widehat{\mathbf{x}}(\varphi) := \widehat{\varphi}(x_1, \ldots, x_N)$ exists for every $\varphi \in \mathscr{A}(\mathbb{R}^N_+)$, and the mapping $\widehat{\mathbf{x}} : \varphi \mapsto \widehat{\mathbf{x}}(\varphi) = \widehat{\varphi}(x_1, \ldots, x_N)$ is the unique multiplicative lattice homomorphism from $\mathscr{A}(\mathbb{R}^N_+)$ to *E* such that $\widehat{dt}_j(x_1, \ldots, x_N) = x_j$ for all $j := 1, \ldots, N$. Moreover, $\widehat{\mathbf{x}}(\mathscr{A}(\mathbb{R}^N_+)) = \langle \langle x_1, \ldots, x_N \rangle$.

Lemma 3. Assume that $\varphi \in \mathscr{A}(\mathbb{R}^N_+)$ is convex. Then for all $\mathbf{x} := (x_1, \ldots, x_N) \in E^N$, $\mathbf{y} := (y_1, \ldots, y_N) \in E^N$, and $\pi, \rho \in \operatorname{Orth}(E)_+$ with $\pi + \rho = I_E$ we have $\widehat{\varphi}(\pi \mathbf{x} + \rho \mathbf{y}) \leq \pi \widehat{\varphi}(\mathbf{x}) + \rho \widehat{\varphi}(\mathbf{y})$, where $\pi \mathbf{x} := (\pi x_1, \ldots, \pi x_N)$. The reverse inequality holds whenever φ is concave.

 \triangleleft Let *L* be the order ideal generated by $\overline{\langle\langle x_1, \ldots, y_N \rangle\rangle}$. Clearly, *L* is an *f*-subalgebra of *E*. If $\pi_0 := \pi|_L$ and $\rho_0 := \rho|_L$ then π_0, ρ_0 Orth(*L*). For any $\omega \in H(L)$ there exists a unique $\widetilde{\omega} \in H_m(\text{Orth}(L))$ such that $\omega(\pi x) = \widetilde{\omega}(\pi)\omega(x)$ for all $x \in L$ and $\pi \in \text{Orth}(L)$, [3, Proposition 2.2 (i)]. If ω is nonsingular then $\alpha \omega$ is multiplicative for some $\alpha > 0$ [3, Corollary 2.5 (i)], and thus we may assume without loss of generality that $\omega \in H_m(L)$. By using (1), the convexity of φ , and the relation $\widetilde{\omega}(\pi) + \widetilde{\omega}(\rho) = 1$ we deduce

$$\omega(\widehat{\varphi}(\pi\mathbf{x} + \rho\mathbf{y})) = \varphi(\widetilde{\omega}(\pi_0)\omega(\mathbf{x}) + \widetilde{\omega}(\rho_0)\omega(\mathbf{y})) \leq \widetilde{\omega}(\pi_0)\varphi(\omega(\mathbf{x})) + \widetilde{\omega}(\rho_0)\varphi(\omega(\mathbf{y}))$$
$$= \widetilde{\omega}(\pi_0)\omega(\widehat{\varphi}(\mathbf{x})) + \widetilde{\omega}(\rho_0)\omega(\widehat{\varphi}(\mathbf{y})) = \omega(\pi\widehat{\varphi}(\mathbf{x}) + \rho\widehat{\varphi}(\mathbf{y})),$$

where $\omega(\mathbf{x}) := (\omega(x_1), \ldots, \omega(x_N))$. If ω is singular then by above definition we have $\omega(\widehat{\varphi}(\mathbf{x})) = \omega(\widehat{\varphi}_1(\mathbf{x})), \ \omega(\widehat{\varphi}(\mathbf{y})) = \omega(\widehat{\varphi}_1(\mathbf{y})), \ \text{and} \ \omega(\widehat{\varphi}(\pi\mathbf{x} + \rho\mathbf{y})) = \omega(\widehat{\varphi}_1(\pi\mathbf{x} + \rho\mathbf{y}))$. At the same time φ_1 is sublinear, since it coincides with the directional derivative of the convex function φ at zero, see Lemma 3. Thus, by replacing φ by φ_1 in the above arguments we again obtain $\omega(\widehat{\varphi}(\pi\mathbf{x} + \rho\mathbf{y})) \leq \omega(\pi\widehat{\varphi}(\mathbf{x}) + \rho\widehat{\varphi}(\mathbf{y}))$. It remains to observe that every $\omega_0 \in H(\langle x_1, \ldots, x_N \rangle)$ admits an extension to $\omega \in H(L)$ and thus H(L) separates the points of $\langle x_1, \ldots, x_N \rangle$. \triangleright

Lemma 4. If $\varphi \in \mathscr{A}(\mathbb{R}^N_+)$ is isotonic, then $\widehat{\varphi}$ is also isotonic, i. e. $\mathbf{x} \leq \mathbf{y}$ implies $\widehat{\varphi}(\mathbf{x}) \leq \widehat{\varphi}(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in E^N_+$. (The order in E^N is defined componentwise.)

 \triangleleft Follows immediately from the above definition (1). \triangleright

3°. Everywhere below (G, +) is a commutative semigroup, while E is a uniformly complete f-algebra and $f_1, \ldots, f_N : G \to E_+$. Let $\mathscr{P}(M)$ stands for the power set of M. Assume that some set-valued map $\mathscr{F} : G \to \mathscr{P}(\operatorname{Orth}(E)_+)$ meets the following three conditions:

(i) π^{-1} exists in Orth(E) for every $\pi \in \mathscr{F}(u)$,

(ii) $\mathscr{F}(u) + \mathscr{F}(v) \subset \mathscr{F}(u+v) - \operatorname{Orth}(E)_+$ for all $u, v \in G$, and

(iii) the infimum (the supremum) of $\{\pi \widehat{\varphi}(\pi^{-1}\mathbf{f}(u)) : \pi \in \mathscr{F}(u)\}$ exists in E for each $u \in G$, where $\mathbf{f}(u) := (f_1(u), \ldots, f_N(u)) \in E^N_+$ and $\pi^{-1}\mathbf{f}(u) := (\pi^{-1}f_1(u), \ldots, \pi^{-1}f_N(u)).$

Lemma 5. Given a function $\varphi : \mathscr{A}(\mathbb{R}^N_+)$ and a set-valued map $\mathscr{F} : G \to \mathscr{P}(\operatorname{Orth}(E)_+)$ satisfying 3 (i–iii), we have the operator $g : G \to E$ $(h : G \to E)$ well defined as

$$g(u) := \inf_{\pi \in \mathscr{F}(u)} \left\{ \pi \widehat{\varphi} \left(\pi^{-1} \mathbf{f}(u) \right) \right\}, \quad \left(h(u) := \sup_{\pi \in \mathscr{F}(u)} \left\{ \pi \widehat{\varphi} \left(\pi^{-1} \mathbf{f}(u) \right) \right\} \right).$$
(2)

 \triangleleft By 3 (i) and Lemma 2 $\hat{\varphi}(\pi^{-1}\mathbf{f}(u))$ exists in E and by 3 (iii) g and h are well defined. \triangleright

4°. Now we are able to state and prove our main result. A function $g: G \to F$ is said to be *subadditive* if $g(u+v) \leq g(u) + g(v)$ for all $u, v \in G$ and *superadditive* if the reversed inequality holds for all $u, v \in G$.

Theorem. Suppose that the operators $g, h : G \to E$ are defined as in (2). Then:

(1) g is subadditive whenever f_1, \ldots, f_N are subadditive and $\varphi \in \mathscr{A}(\mathbb{R}^{\mathbb{N}}_+)$ is increasing and convex;

(2) h is superadditive whenever f_1, \ldots, f_N are superadditive and $\varphi \in \mathscr{A}(\mathbb{R}^{\mathbb{N}}_+)$ is increasing and concave.

 \triangleleft We restrict ourselves to the subadditivity of g. The superadditivity of h can be proved in a similar way. Take $u, v \in G$ and let $\pi \in \mathscr{F}(u)$ and $\rho \in \mathscr{F}(v)$. By 3 (ii) we can choose $\sigma \in \mathscr{F}(u+v)$ with $\sigma \ge \pi + \rho$. In view of 3 (i) π , ρ , and σ are invertible. Taking subadditivity of $\mathbf{f}: G \to E^N$ and some elementary properties of orthomorphisms into account we have

$$\sigma^{-1}\mathbf{f}(u+v) \leqslant \sigma^{-1}\big(\mathbf{f}(u) + \mathbf{f}(v)\big) \leqslant \pi \sigma^{-1}\big(\pi^{-1}\mathbf{f}(u)\big) + \rho \sigma^{-1}\big(\rho^{-1}\mathbf{f}(v)\big).$$

Putting $\tau := \sigma - \pi - \rho$ and making use of Lemmas 3, 4 and 5 we deduce

$$g(u+v) \leqslant \sigma \widehat{\varphi} \big(\sigma^{-1} \mathbf{f}(u+v) \big) \leqslant \sigma \widehat{\varphi} \big(\pi \sigma^{-1} (\pi^{-1} \mathbf{f}(u)) \big) + \rho \sigma^{-1} \big(\rho^{-1} \mathbf{f}(v) + \tau \sigma^{-1} 0 \big) \\ \leqslant \pi \widehat{\varphi} (\pi^{-1} \mathbf{f}(u)) + \rho \widehat{\varphi} (\rho^{-1} \mathbf{f}(v)) + \sigma^{-1} \tau \widehat{\varphi} (0) = \pi \widehat{\varphi} (\pi^{-1} \mathbf{f}(u)) + \rho \widehat{\varphi} (\rho^{-1} \mathbf{f}(v)).$$

By taking infimum over $\pi \in \mathscr{F}(u)$ and $\rho \in \mathscr{F}(v)$ we come to the required inequality. \triangleright

REMARK 1. Suppose that the hypotheses of 3 (i–iii) are fulfilled for some fixed $u, v \in G$. Then the inequality $g(u+v) \leq g(u) + g(v)$ $(h(u+v) \geq h(u) + h(v))$ holds.

REMARK 2. An f-algebra E can be identified with Orth(E) if and only if E has a unit element. Thus, above theorem remains true if E is a uniformly complete unitary f-algebra and the map $\mathscr{F}: G \to \mathscr{P}(E_+)$ satisfies the condition 3 (i–iii) with Orth(E) replaced by E.

5°. For a single-valued map $\mathscr{F}(x) = \{f_0(x)\} \ (x \in G) \text{ with } f_0 : G \to \operatorname{Orth}(E)_+$ we have the following particular case of the above Theorem, see [8].

Corollary 1. Suppose that f_1, \ldots, f_N are subadditive, $f_0 : G \to \operatorname{Orth}(E)_+$ is superadditive, and $f_0(u)$ is invertible in $\operatorname{Orth}(E)$ for every $u \in G$. Then, given an increasing continuous convex function $\varphi \in \mathscr{A}(\mathbb{R}^N_+)$, the Peetre–Persson inequality holds:

$$f_0(u+v)\widehat{\varphi}\left(\frac{\mathbf{f}(u+v)}{f_0(u+v)}\right) \leqslant f_0(u)\widehat{\varphi}\left(\frac{\mathbf{f}(u)}{f_0(u)}\right) + f_0(v)\widehat{\varphi}\left(\frac{\mathbf{f}(v)}{f_0(v)}\right). \tag{3}$$

The reverse inequality holds in (3) whenever f_0, f_1, \ldots, f_N are superadditive, and φ is an increasing concave function.

REMARK 3. The above theorem in the particular case of $E = \mathbb{R}$ was obtained by Persson [12, Theorems 1 and 2], while Corollary 2 covers the "single-valued case" by Peetre and Persson [11]. A short history of the Beckenbach–Dresher inequality is presented in [13]. Some instances of the inequality are also addressed in [9, 10].

 6° . We need two more auxiliary facts. First of them is a generalized Minkowski inequality.

Lemma 6. Let *E* and *F* be uniformly complete vector lattices, $f : E_+ \to F$ an increasing sublinear operator. If either and $0 < \alpha \leq 1$ or $\alpha < 0$, then for all $x_1, \ldots, x_N \in E$ we have

$$f\left(\left(\sum_{i=1}^{N} |x_i|^{\alpha}\right)^{1/\alpha}\right) \leqslant \left(\sum_{i=1}^{N} f(|x_i|)^{\alpha}\right)^{1/\alpha}.$$
(4)

The reverse inequality holds if $f: E_+ \to F$ is superlinear and $\alpha \ge 1$.

 \triangleleft The function $\phi_{\alpha}(\mathbf{t}) = (t_1^{\alpha} + \ldots + t_N^{\alpha})^{1/\alpha}$ ($\mathbf{t} \in \mathbb{R}^N_+$) is superlinear if $0 < \alpha < 1$ and sublinear if $\alpha \ge 1$. In case $\alpha < 0$ we define $\phi_{\alpha}(\mathbf{t}) = 0$ whenever $t_1 \cdot \ldots \cdot t_N = 0$ and then ϕ_{α} is superlinear on $\operatorname{int}(\mathbb{R}^N_+)$. In all cases $\phi_{\alpha} \in \mathscr{H}(\mathbb{R}^N_+)$ and (4) follows from the generalized Jensen inequality in vector lattices, see [4, Theorem 5.2] and [7, Theorem 4.2]. \triangleright

Let A and B be uniformly complete unitary f-algebras, while $E \subset A$ is a vector sublattice. For every $x \in A_+$ and $0 the p-power <math>x^p$ is well defined in A, see [3, Theorem 4.12]. If $x \in A_+$ is invertible and p < 0, then we can also define $x^p := (x^{-1})^{-p}$. It can be easily seen that $\omega(x^p) = \omega(x)^p$ for any $\omega \in H_m(A_0)$ with an f-subalgebra $A_0 \subset$ containing x. Assume that $R: E \to B$ is a positive operator. Given $x \in A$ with $x^p \in E$, we define $R_p(x) := R(x^p)^{\frac{1}{p}}$. This definition is sound provided that x is invertible in A and $R(x^p)$ is invertible in B.

Lemma 7. If $p \ge 1$ and $x_1, \ldots, x_N \in A_+$ are such that $x_1^p, \ldots, x_N^p \in E$ and $(x_1 + \ldots + x_N)^p \in E$, then the inequality holds:

$$R_p(x_1 + \ldots + x_N) \leqslant R_p(x) + \ldots + R_p(x_N).$$
(5)

The reversed inequality is true whenever $p \leq 1$, $p \neq 0$. (In case p < 0 the positive elements x_i and $R(x_i^p)$ are assumed to be invertible in A.)

 \triangleleft Denote $u_i := x_i^p$, $\alpha := 1/p$, and observe that $(u_1^{\alpha} + \ldots + u_N^{\alpha})^{\frac{1}{\alpha}} = \phi_{\alpha}(u_1, \ldots, u_N)$ where $\phi_{\alpha}(u_1, \ldots, u_N)$ is understood in the sense of homogeneous functional calculus. In particular, $(x_1 + \ldots + x_N)^p = (u_1^{\alpha} + \ldots + u_N^{\alpha})^{\frac{1}{\alpha}} \in E$ for every $p \neq 0$. We need consider three cases. If $p \ge 0$ then by applying Lemma 6 to the right-hand side of the equality

$$R_p(x_1 + \ldots + x_N) = R\left(\left(u_1^{\alpha} + \ldots + u_N^{\alpha}\right)^{\frac{1}{\alpha}}\right)^{\alpha} = \left(R(\phi_{\alpha}(u_1, \ldots, u_N))\right)^{\alpha}$$

with $u_i^{\alpha} \in E$ replaced by x_i and making use of $R_p(x_i) = R(u_i)^{\alpha}$ (i := 1, ..., N), we arrive immediately at the desired inequality (5). The same arguments involving the reversed version of (4) leads to the reversed inequality in (5) whenever 0 . Finally, in the case <math>p < 0, again by Lemma 6, we have $R((u_1^{\alpha} + ... + u_N^{\alpha})^{\frac{1}{\alpha}}) \leq (R(u_1)^{\alpha} + ... + R(u_N)^{\alpha})^{\frac{1}{\alpha}}$ and rising both sides of this inequality to the α th power we get the reversed inequality (5). \triangleright

 7° . Now, we can deduce a generalization of one more Beckenbach–Dresher type inequality due to Peetre and Persson [11].

Corollary 2. Let $S : E \to F$ and $T : E \to \operatorname{Orth}(F)$ be positive operators. Take $x_1, \ldots, x_N \in A_+$ such that $x_i^{\alpha}, x_i^{\beta}, (\sum_{i=1}^N x_i)^{\alpha}, (\sum_{i=1}^N x_i)^{\beta} \in E$ $(i := 1, \ldots, N)$. If $p \ge 1$,

 $\beta \leq 1 \leq \alpha, \beta \neq 0$, and $T(x_i^\beta)$ are invertible in Orth(F) whenever $\beta < 0$, then

$$\frac{\left(S\left(\left(\sum_{i=1}^{N} x_{i}\right)^{\alpha}\right)\right)^{p/\alpha}}{\left(T\left(\left(\sum_{i=1}^{N} x_{i}\right)^{\beta}\right)\right)^{(p-1)/\beta}} \leqslant \sum_{i=1}^{N} \frac{\left(S\left(x_{i}^{\alpha}\right)\right)^{p/\alpha}}{\left(T\left(x_{i}^{\beta}\right)\right)^{(p-1)/\beta}}.$$
(6)

 \triangleleft Put G = E, $f(x) := \mathbf{f}(x) := S(x^{\alpha})^{1/\alpha}$, $f_0(x) := T(x^{\beta})^{1/\beta}$, N = 1, and $\varphi(t) = t^p$ in Corollary 1. By Lemma 7 f is subadditive, f_0 is superadditive, and $f_0(x_i)$ is invertible in Orth(F). Moreover, $\varphi \in \mathscr{A}(\mathbb{R}_+)$ is convex and increasing whenever $p \ge 1$. Now, the desired inequality is deduced by induction. \triangleright

REMARK 4. If $0 then the concave function <math>\varphi(t) = t^p$ is not in $\mathscr{A}(\mathbb{R}_+)$ and we cannot guarantee the reversed inequality in (6). Nevertheless, in the case that F is a unitary f-algebra one can take $\varphi \in \mathscr{B}(\mathbb{R}^N_+)$ in Peetre–Persson's inequality (3) and thus the reversed inequality is true in (6) whenever $0 , <math>\alpha, \beta \leq 1$, and $\alpha, \beta \neq 0$.

References

- 1. Aliprantis C. D., Burkinshaw O. Positive operators.—London etc.: Acad. Press Inc., 1985.—xvi+367 p.
- 2. Beckenbach E. F., Bellman R. Inequalities.—Berlin: Springer, 1983.
- Buskes G., de Pagter B., van Rooij A. Functional calculus on Riesz spaces // Indag. Math.—1991.— Vol. 4, № 2.—P. 423–436.
- 4. Kusraev A. G. Homogeneous functional calculus on vector lattices.—Vladikavkaz: Southern Math. Inst. VSC RAS, 2008.—34 p.—(Preprint № 1).
- 5. Kusraev A. G. Functional calculus and Minkowski duality on vector lattices // Vladikavkaz Math. J.—2009.—Vol. 11, № 2.—P. 31–42.
- 6. Kusraev A. G., Kutateladze S. S. Subdifferentials: Theory and applications.—Dordrecht: Kluwer Academic Publ., 1995.—ix+398 p.
- Kusraev A. G. Inequalities in vector lattices // Studies on Mathematical Analysis, Differential Equation, and their Applications / Eds. Korobeĭnik Yu. F., Kusraev A. G.—Vladikavkaz: SMI VSC RAS, 2010.— P. 82–96.—(Review of Science: The South of Russia).
- 8. Kusraev A. G., Kutateladze S. S. Envelopes and inequalities in vector lattices.—(to appear).
- 9. Mitrinović D. S., Pečarić J. E., Fink A. M. Classical and new inequalities in analysis.—Dordrecht: Kluwer, 1993.—xvii+740 p.
- 10. Pečarić J. E., Proschan F., Tong Y. L. Convex functions, partial orderings, and statistical application.— Boston a. o.: Academic Press, 1992.—xiii+469 p.
- 11. Peetre J., Persson L.-E. A general Beckenbach's inequality with applications // Function Spaces, Differential Operators and Nonlinear Analysis. Pitman Res. Notes Math. Ser. 211.—1989.—P. 125–139.
- Persson L.-E. Generalizations of some classical inequalities and their applications // Nonlinear Analysis, Function Spaces and Applications / Eds. Krbec M., Kufner A., Opic B., Rákosník J.— Leipzig: Teubner, 1990.—P. 127–148.
- 13. Varošanec S. A generalized Beckenbach–Dresher inequality // Banach J. Math. Anal.–2010.–Vol. 4, Nº 1.–13–20.

ANATOLY G. KUSRAEV Southern Mathematical Institute Vladikavkaz Science Center of the RAS, *Director* RUSSIA, 362027, Vladikavkaz, Markus street, 22 E-mail: kusraev@smath.ru

НЕРАВЕНСТВО ТИПА БЕККЕНБАХА — ДРЕШЕРА В РАВНОМЕРНО ПОЛНЫХ *f*-АЛГЕБРАХ

А. Г. Кусраев

Установлено общее неравенство типа Беккенбаха — Дрешера в равномерно полных f-алгебрах.

Ключевые слова: *f*-алгебра, векторная решетка, решеточный гомоморфизм, положительный оператор.