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An easy modification of the continuous functional calculus on unitary f -algebras as de-
fined in [3] makes it possible to translate the Fenchel–Moreau duality to f -algebra setting and
to produce some envelope representations results, see [8]. This machinery, often called quasi-

linearization (see [2, 9]), yields the validity of some classical inequalities in every uniformly
complete vector lattice [4, 5]. The aim of this note is to give general forms of Peetre–Persson
and Beckenbach–Dresher inequalities in uniformly complete f -algebras.

The unexplained terms of use below can be found in [1] and [6].

1◦. We need a slightly improved version of continuous functional calculus on uniformly
complete f -algebras constructed in [3, Theorem 5.2].

Denote by B(RN
+ ) the f -algebra of continuous functions on R

N
+ with polynomial growth;

i. e., ϕ ∈ B(RN
+ ) if and only if ϕ ∈ C(RN

+ ) and there are n ∈ N and M ∈ R+ satisfying
|ϕ(t)| 6 M(1 +w(t))n (t ∈ RN

+ ), where t := (t1, . . . , tN ), w(t) := |t1|+ . . .+ |tN | and 1 is the
function identically equal to 1 on R

N
+ . Denote by B0(R

N
+ ) the set of all functions in B(RN

+ )
vanishing at zero. Let A (RN

+ ) stands for the set of all ϕ ∈ B(RN
+ ) such that limα↓0 α

−1ϕ(αt)
exists uniformly on bounded subsets of R

N
+ . Evidently, A (RN

+ ) ⊂ B0(R
N
+ ). Finally, let

H (RN
+ ) denotes the set of all continuous positively homogeneous functions on R

N
+ .

Lemma 1. The sets B(RN
+ ), B0(R

N
+ ), and A (RN

+ ) are uniformly complete f -algebras
with respect to pointwise operations and ordering. Any ϕ ∈ A (RN

+ ) admits a unique decom-
position ϕ = ϕ1 + wϕ2 with ϕ1 ∈ H (RN

+ ) and ϕ2 ∈ B0(R
N
+ ), i. e.

A (RN
+ ) = H (RN

+ ) ⊕ wB0(R
N
+ ).

Moreover, ϕ1(t) = ϕ′(0)t := limα↓0 α
−1ϕ(αt) for all t ∈ R

N .

C See [3, Lemma 4.8, Section 5]. B
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2◦. Consider an f -algebra E. Denote by H(E) the the set of all nonzero R-valued lattice
homomorphisms on E and by Hm(E) the subset of H(E) consisting of multiplicative func-
tionals. We say that ω ∈ H(E) is singular if ω(xy) = 0 for all x, y ∈ E. Let Hs(E) denotes
the set of singular members of H(E). Given a finite tuple x = (x1, . . . , xN ) ∈ EN , denote by
〈〈x 〉〉 := 〈〈x1, . . . , xN 〉〉 the f -subalgebra of E generated by {x1, . . . , xN}.

Definition. Let E be a uniformly complete f -algebra and x1, . . . , xN ∈ E+. Take a
continuous function ϕ : R

N
+ → R. Say that the element ϕ̂(x1, . . . , xN ) exists or is well-defined

in E provided that there is y ∈ E satisfying

ω(y) = ϕ(ω(x1), . . . , ω(xN )) (ω ∈ Hm(〈〈x1, . . . , xN , y〉〉),

ω(y) = ϕ1(ω(x1), . . . , ω(xN )) (ω ∈ Hs(〈〈x1, . . . , xN , y〉〉),
(1)

cp. [3, Remark 5.3 (ii)]. This is written down as y = ϕ̂(x1, . . . , xN ).

Lemma 2. Assume that E is a uniformly complete f -algebra and x1, . . . , xN ∈ E+, and
x := (x1, . . . , xN ). Then x̂(ϕ) := ϕ̂(x1, . . . , xN ) exists for every ϕ ∈ A (RN

+ ), and the mapping
x̂ : ϕ 7→ x̂(ϕ) = ϕ̂(x1, . . . , xN ) is the unique multiplicative lattice homomorphism from
A (RN

+ ) to E such that d̂tj(x1, . . . , xN ) = xj for all j := 1, . . . , N . Moreover, x̂(A (RN
+ )) =

〈〈x1, . . . , xN 〉〉.

C Take ϕ ∈ A (RN
+ ). In view of Lemma 1 ϕ = ϕ1+wϕ2 with ϕ1 ∈ H (RN

+ ), ϕ2 ∈ B0(R
N
+ ),

and w(t) = |t1| + . . . + |tN |. For x ∈ E denote by ẋ ∈ Orth(E) the multiplication operator
y 7→ xy (x ∈ E). According to [5, Theorem 3.3] and [8, Theorem 2.10] we can define
correctly ϕ̂1(x1, . . . , xN ) in E and ϕ̂2(ẋ1, . . . , ẋN ) in Orth(E), respectively. Now, it remains to
put ϕ̂(x1, . . . , xN ) := ϕ̂1(x1, . . . , xN ) + ϕ̂2(ẋ1, . . . , ẋN )w(x1, . . . , xN ) and check the soundness
of this definition. Closer examination of the proof can be carried out as in the case of
ϕ ∈ A (RN ), see [3]. B

Lemma 3. Assume that ϕ ∈ A (RN
+ ) is convex. Then for all x := (x1, . . . , xN ) ∈ EN ,

y := (y1, . . . , yN ) ∈ EN , and π, ρ ∈ Orth(E)+ with π + ρ = IE we have ϕ̂(πx + ρy) 6

πϕ̂(x) + ρϕ̂(y), where πx := (πx1, . . . , πxN ). The reverse inequality holds whenever ϕ is
concave.

C Let L be the order ideal generated by 〈〈x1, . . . , yN 〉〉. Clearly, L is an f -subalgebra
of E. If π0 := π|L and ρ0 := ρ|L then π0, ρ0 Orth(L). For any ω ∈ H(L) there exists a unique
ω̃ ∈ Hm(Orth(L)) such that ω(πx) = ω̃(π)ω(x) for all x ∈ L and π ∈ Orth(L), [3, Proposition
2.2 (i)]. If ω is nonsingular then αω is multiplicative for some α > 0 [3, Corollary 2.5 (i)], and
thus we may assume without loss of generality that ω ∈ Hm(L). By using (1), the convexity
of ϕ, and the relation ω̃(π) + ω̃(ρ) = 1 we deduce

ω(ϕ̂(πx + ρy)) = ϕ
(
ω̃(π0)ω(x) + ω̃(ρ0)ω(y)

)
6 ω̃(π0)ϕ(ω(x)) + ω̃(ρ0)ϕ(ω(y))

= ω̃(π0)ω(ϕ̂(x)) + ω̃(ρ0)ω(ϕ̂(y)) = ω(πϕ̂(x) + ρϕ̂(y)),

where ω(x) := (ω(x1), . . . , ω(xN )). If ω is singular then by above definition we have ω(ϕ̂(x)) =
ω(ϕ̂1(x)), ω(ϕ̂(y)) = ω(ϕ̂1(y)), and ω(ϕ̂(πx + ρy)) = ω(ϕ̂1(πx + ρy)). At the same time
ϕ1 is sublinear, since it coincides with the directional derivative of the convex function ϕ at
zero, see Lemma 3. Thus, by replacing ϕ by ϕ1 in the above arguments we again obtain
ω(ϕ̂(πx + ρy)) 6 ω(πϕ̂(x) + ρϕ̂(y)). It remains to observe that every ω0 ∈ H(〈〈x1, . . . , xN 〉〉)
admits an extension to ω ∈ H(L) and thus H(L) separates the points of 〈〈x1, . . . , xN 〉〉. B

Lemma 4. If ϕ ∈ A (RN
+ ) is isotonic, then ϕ̂ is also isotonic, i. e. x 6 y implies

ϕ̂(x) 6 ϕ̂(y) for all x,y ∈ EN
+ . (The order in EN is defined componentwise.)

C Follows immediately from the above definition (1). B
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3◦. Everywhere below (G,+) is a commutative semigroup, while E is a uniformly complete
f -algebra and f1, . . . , fN : G→ E+. Let P(M) stands for the power set of M . Assume that
some set-valued map F : G→ P(Orth(E)+) meets the following three conditions:

(i) π−1 exists in Orth(E) for every π ∈ F (u),
(ii) F (u) + F (v) ⊂ F (u+ v) − Orth(E)+ for all u, v ∈ G, and
(iii) the infimum (the supremum) of {πϕ̂(π−1f(u)) : π ∈ F (u)} exists in E for each

u ∈ G, where f(u) := (f1(u), . . . , fN (u)) ∈ EN
+ and π−1f(u) := (π−1f1(u), . . . , π

−1fN (u)).

Lemma 5. Given a function ϕ : A (RN
+ ) and a set-valued map F : G → P(Orth(E)+)

satisfying 3 (i–iii), we have the operator g : G→ E (h : G→ E) well defined as

g(u) := inf
π∈F (u)

{
πϕ̂
(
π−1f(u)

)}
,
(
h(u) := sup

π∈F (u)

{
πϕ̂
(
π−1f(u)

)})
. (2)

C By 3 (i) and Lemma 2 ϕ̂
(
π−1f(u)

)
exists in E and by 3 (iii) g and h are well defined. B

4◦. Now we are able to state and prove our main result. A function g : G → F is said
to be subadditive if g(u + v) 6 g(u) + g(v) for all u, v ∈ G and superadditive if the reversed
inequality holds for all u, v ∈ G.

Theorem. Suppose that the operators g, h : G→ E are defined as in (2). Then:
(1) g is subadditive whenever f1, . . . , fN are subadditive and ϕ ∈ A (RN

+) is increasing
and convex;

(2) h is superadditive whenever f1, . . . , fN are superadditive and ϕ ∈ A (RN
+) is increasing

and concave.

C We restrict ourselves to the subadditivity of g. The superadditivity of h can be proved
in a similar way. Take u, v ∈ G and let π ∈ F (u) and ρ ∈ F (v). By 3 (ii) we can choose
σ ∈ F (u+v) with σ > π+ρ. In view of 3 (i) π, ρ, and σ are invertible. Taking subadditivity
of f : G→ EN and some elementary properties of orthomorphisms into account we have

σ−1f(u+ v) 6 σ−1
(
f(u) + f(v)

)
6 πσ−1

(
π−1f(u)

)
+ ρσ−1

(
ρ−1f(v)

)
.

Putting τ := σ − π − ρ and making use of Lemmas 3, 4 and 5 we deduce

g(u+ v) 6 σϕ̂
(
σ−1f(u+ v)

)
6 σϕ̂

(
πσ−1(π−1f(u))

)
+ ρσ−1

(
ρ−1f(v) + τσ−10

)

6 πϕ̂(π−1f(u)) + ρϕ̂(ρ−1f(v)) + σ−1τϕ̂(0) = πϕ̂(π−1f(u)) + ρϕ̂(ρ−1f(v)).

By taking infimum over π ∈ F (u) and ρ ∈ F (v) we come to the required inequality. B

Remark 1. Suppose that the hypotheses of 3 (i–iii) are fulfilled for some fixed u, v ∈ G.
Then the inequality g(u+ v) 6 g(u) + g(v) (h(u + v) > h(u) + h(v)) holds.

Remark 2. An f -algebra E can be identified with Orth(E) if and only if E has a unit
element. Thus, above theorem remains true if E is a uniformly complete unitary f -algebra
and the map F : G→ P(E+) satisfies the condition 3 (i–iii) with Orth(E) replaced by E.

5◦. For a single-valued map F (x) = {f0(x)} (x ∈ G) with f0 : G → Orth(E)+ we have
the following particular case of the above Theorem, see [8].

Corollary 1. Suppose that f1, . . . , fN are subadditive, f0 : G→ Orth(E)+ is superaddi-
tive, and f0(u) is invertible in Orth(E) for every u ∈ G. Then, given an increasing continuous
convex function ϕ ∈ A (RN

+ ), the Peetre–Persson inequality holds:

f0(u+ v)ϕ̂

(
f(u+ v)

f0(u+ v)

)
6 f0(u)ϕ̂

(
f(u)

f0(u)

)
+ f0(v)ϕ̂

(
f(v)

f0(v)

)
. (3)

The reverse inequality holds in (3) whenever f0, f1, . . . , fN are superadditive, and ϕ is an
increasing concave function.
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Remark 3. The above theorem in the particular case of E = R was obtained by Persson
[12, Theorems 1 and 2], while Corollary 2 covers the “single-valued case” by Peetre and
Persson [11]. A short history of the Beckenbach–Dresher inequality is presented in [13].
Some instances of the inequality are also addressed in [9, 10].

6◦. We need two more auxiliary facts. First of them is a generalized Minkowski inequality.

Lemma 6. Let E and F be uniformly complete vector lattices, f : E+ → F an increasing
sublinear operator. If either and 0 < α 6 1 or α < 0, then for all x1, . . . , xN ∈ E we have

f

(( N∑

i=1

|xi|
α

)1/α
)

6

(
N∑

i=1

f(|xi|)
α

)1/α

. (4)

The reverse inequality holds if f : E+ → F is superlinear and α > 1.

C The function φα(t) =
(
tα1 + . . . + tαN

)1/α
(t ∈ R

N
+ ) is superlinear if 0 < α < 1 and

sublinear if α > 1. In case α < 0 we define φα(t) = 0 whenever t1 · . . . · tN = 0 and then φα

is superlinear on int(RN
+ ). In all cases φα ∈ H (RN

+ ) and (4) follows from the generalized
Jensen inequality in vector lattices, see [4, Theorem 5.2] and [7, Theorem 4.2]. B

Let A and B be uniformly complete unitary f -algebras, while E ⊂ A is a vector sublattice.
For every x ∈ A+ and 0 < p ∈ R the p-power xp is well defined in A, see [3, Theorem 4.12].
If x ∈ A+ is invertible and p < 0, then we can also define xp := (x−1)−p. It can be easily seen
that ω(xp) = ω(x)p for any ω ∈ Hm(A0) with an f -subalgebra A0 ⊂ containing x. Assume

that R : E → B is a positive operator. Given x ∈ A with xp ∈ E, we define Rp(x) := R(xp)
1
p .

This definition is sound provided that x is invertible in A and R(xp) is invertible in B.

Lemma 7. If p > 1 and x1, . . . , xN ∈ A+ are such that xp
1, . . . , x

p
N ∈ E and (x1 + . . . +

xN )p ∈ E, then the inequality holds:

Rp(x1 + . . .+ xN ) 6 Rp(x) + . . .+Rp(xN ). (5)

The reversed inequality is true whenever p 6 1, p 6= 0. (In case p < 0 the positive elements xi

and R(xp
i ) are assumed to be invertible in A.)

C Denote ui := xp
i , α := 1/p, and observe that

(
uα

1 + . . . + uα
N

) 1
α = φα(u1, . . . , uN ) where

φα(u1, . . . , uN ) is understood in the sense of homogeneous functional calculus. In particular,

(x1 + . . . + xN )p =
(
uα

1 + . . . + uα
N

) 1
α ∈ E for every p 6= 0. We need consider three cases. If

p > 0 then by applying Lemma 6 to the right-hand side of the equality

Rp(x1 + . . . + xN ) = R
((
uα

1 + . . .+ uα
N

) 1
α

)α
=
(
R(φα(u1, . . . , uN ))

)α

with uα
i ∈ E replaced by xi and making use of Rp(xi) = R(ui)

α (i := 1, . . . , N), we arrive
immediately at the desired inequality (5). The same arguments involving the reversed version
of (4) leads to the reversed inequality in (5) whenever 0 < p < 1. Finally, in the case p < 0,

again by Lemma 6, we have R
(
(uα

1 + . . . + uα
N )

1
α

)
6
(
R(u1)

α + . . . + R(uN )α
) 1

α and rising
both sides of this inequality to the αth power we get the reversed inequality (5). B

7◦. Now, we can deduce a generalization of one more Beckenbach–Dresher type inequality
due to Peetre and Persson [11].

Corollary 2. Let S : E → F and T : E → Orth(F ) be positive operators. Take

x1, . . . , xN ∈ A+ such that xα
i , x

β
i ,
(∑N

i=1 xi

)α
,
(∑N

i=1 xi

)β
∈ E (i := 1, . . . , N). If p > 1,
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β 6 1 6 α, β 6= 0, and T (xβ
i ) are invertible in Orth(F ) whenever β < 0, then

(
S
((∑N

i=1 xi

)α))p/α

(
T
((∑N

i=1 xi

)β))(p−1)/β
6

N∑

i=1

(
S
(
xα

i

))p/α

(
T
(
xβ

i

))(p−1)/β
. (6)

C Put G = E, f(x) := f(x) := S(xα)1/α, f0(x) := T (xβ)1/β , N = 1, and ϕ(t) = tp in
Corollary 1. By Lemma 7 f is subadditive, f0 is superadditive, and f0(xi) is invertible in
Orth(F ). Moreover, ϕ ∈ A (R+) is convex and increasing whenever p > 1. Now, the desired
inequality is deduced by induction. B

Remark 4. If 0 < p < 1 then the concave function ϕ(t) = tp is not in A (R+) and we
cannot guarantee the reversed inequality in (6). Nevertheless, in the case that F is a unitary
f -algebra one can take ϕ ∈ B(RN

+ ) in Peetre–Persson’s inequality (3) and thus the reversed
inequality is true in (6) whenever 0 < p 6 1, α, β 6 1, and α, β 6= 0.
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НЕРАВЕНСТВО ТИПА БЕККЕНБАХА — ДРЕШЕРА
В РАВНОМЕРНО ПОЛНЫХ f -АЛГЕБРАХ

А. Г. Кусраев

Установлено общее неравенство типа Беккенбаха — Дрешера в равномерно полных f -алгебрах.

Ключевые слова: f -алгебра, векторная решетка, решеточный гомоморфизм, положительный опе-
ратор.


