A BECKENBACH-DRESHER TYPE INEQUALITY IN UNIFORMLY COMPLETE f-ALGEBRAS

A. G. Kusraev

To the memory of Gleb Akilov on the occasion of the 90th anniversary of his birth

A general form Beckenbach-Dresher inequality in uniformly complete f-algebras is given.

Mathematics Subject Classification (2000): 06F25, 46A40.
Key words: f-algebra, vector lattice, lattice homomorphism, positive operator.
An easy modification of the continuous functional calculus on unitary f-algebras as defined in [3] makes it possible to translate the Fenchel-Moreau duality to f-algebra setting and to produce some envelope representations results, see [8]. This machinery, often called quasilinearization (see $[2,9]$), yields the validity of some classical inequalities in every uniformly complete vector lattice [4,5]. The aim of this note is to give general forms of Peetre-Persson and Beckenbach-Dresher inequalities in uniformly complete f-algebras.

The unexplained terms of use below can be found in [1] and [6].
$\mathbf{1}^{\circ}$. We need a slightly improved version of continuous functional calculus on uniformly complete f-algebras constructed in [3, Theorem 5.2].

Denote by $\mathscr{B}\left(\mathbb{R}_{+}^{N}\right)$ the f-algebra of continuous functions on \mathbb{R}_{+}^{N} with polynomial growth; i. e., $\varphi \in \mathscr{B}\left(\mathbb{R}_{+}^{N}\right)$ if and only if $\varphi \in C\left(\mathbb{R}_{+}^{N}\right)$ and there are $n \in \mathbb{N}$ and $M \in \mathbb{R}_{+}$satisfying $|\varphi(\mathbf{t})| \leqslant M(\mathbf{1}+w(\mathbf{t}))^{n}\left(\mathbf{t} \in \mathbb{R}_{+}^{N}\right)$, where $\mathbf{t}:=\left(t_{1}, \ldots, t_{N}\right), w(\mathbf{t}):=\left|t_{1}\right|+\ldots+\left|t_{N}\right|$ and $\mathbf{1}$ is the function identically equal to 1 on \mathbb{R}_{+}^{N}. Denote by $\mathscr{B}_{0}\left(\mathbb{R}_{+}^{N}\right)$ the set of all functions in $\mathscr{B}\left(\mathbb{R}_{+}^{N}\right)$ vanishing at zero. Let $\mathscr{A}\left(\mathbb{R}_{+}^{N}\right)$ stands for the set of all $\varphi \in \mathscr{B}\left(\mathbb{R}_{+}^{N}\right)$ such that $\lim _{\alpha \downarrow 0} \alpha^{-1} \varphi(\alpha \mathbf{t})$ exists uniformly on bounded subsets of \mathbb{R}_{+}^{N}. Evidently, $\mathscr{A}\left(\mathbb{R}_{+}^{N}\right) \subset \mathscr{B}_{0}\left(\mathbb{R}_{+}^{N}\right)$. Finally, let $\mathscr{H}\left(\mathbb{R}_{+}^{N}\right)$ denotes the set of all continuous positively homogeneous functions on \mathbb{R}_{+}^{N}.

Lemma 1. The sets $\mathscr{B}\left(\mathbb{R}_{+}^{N}\right), \mathscr{B}_{0}\left(\mathbb{R}_{+}^{N}\right)$, and $\mathscr{A}\left(\mathbb{R}_{+}^{N}\right)$ are uniformly complete f-algebras with respect to pointwise operations and ordering. Any $\varphi \in \mathscr{A}\left(\mathbb{R}_{+}^{N}\right)$ admits a unique decomposition $\varphi=\varphi_{1}+w \varphi_{2}$ with $\varphi_{1} \in \mathscr{H}\left(\mathbb{R}_{+}^{N}\right)$ and $\varphi_{2} \in \mathscr{B}_{0}\left(\mathbb{R}_{+}^{N}\right)$, i. e.

$$
\mathscr{A}\left(\mathbb{R}_{+}^{N}\right)=\mathscr{H}\left(\mathbb{R}_{+}^{N}\right) \oplus w \mathscr{B}_{0}\left(\mathbb{R}_{+}^{N}\right)
$$

Moreover, $\varphi_{1}(\mathbf{t})=\varphi^{\prime}(0) \mathbf{t}:=\lim _{\alpha \downarrow 0} \alpha^{-1} \varphi(\alpha \mathbf{t})$ for all $\mathbf{t} \in \mathbb{R}^{N}$.
\triangleleft See [3, Lemma 4.8, Section 5]. \triangleright

[^0]$\mathbf{2}^{\circ}$. Consider an f-algebra E. Denote by $H(E)$ the the set of all nonzero \mathbb{R}-valued lattice homomorphisms on E and by $H_{m}(E)$ the subset of $H(E)$ consisting of multiplicative functionals. We say that $\omega \in H(E)$ is singular if $\omega(x y)=0$ for all $x, y \in E$. Let $H_{s}(E)$ denotes the set of singular members of $H(E)$. Given a finite tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \in E^{N}$, denote by $\langle\langle\mathbf{x}\rangle\rangle:=\left\langle\left\langle x_{1}, \ldots, x_{N}\right\rangle\right\rangle$ the f-subalgebra of E generated by $\left\{x_{1}, \ldots, x_{N}\right\}$.

Definition. Let E be a uniformly complete f-algebra and $x_{1}, \ldots, x_{N} \in E_{+}$. Take a continuous function $\varphi: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}$. Say that the element $\widehat{\varphi}\left(x_{1}, \ldots, x_{N}\right)$ exists or is well-defined in E provided that there is $y \in E$ satisfying

$$
\begin{align*}
& \omega(y)=\varphi\left(\omega\left(x_{1}\right), \ldots, \omega\left(x_{N}\right)\right) \quad\left(\omega \in H_{m}\left(\left\langle\left\langle x_{1}, \ldots, x_{N}, y\right\rangle\right\rangle\right)\right. \\
& \omega(y)=\varphi_{1}\left(\omega\left(x_{1}\right), \ldots, \omega\left(x_{N}\right)\right) \quad\left(\omega \in H_{s}\left(\left\langle\left\langle x_{1}, \ldots, x_{N}, y\right\rangle\right\rangle\right)\right. \tag{1}
\end{align*}
$$

cp. $\left[3\right.$, Remark 5.3 (ii)]. This is written down as $y=\widehat{\varphi}\left(x_{1}, \ldots, x_{N}\right)$.
Lemma 2. Assume that E is a uniformly complete f-algebra and $x_{1}, \ldots, x_{N} \in E_{+}$, and $\mathbf{x}:=\left(x_{1}, \ldots, x_{N}\right)$. Then $\widehat{\mathbf{x}}(\varphi):=\widehat{\varphi}\left(x_{1}, \ldots, x_{N}\right)$ exists for every $\varphi \in \mathscr{A}\left(\mathbb{R}_{+}^{N}\right)$, and the mapping $\widehat{\mathbf{x}}: \varphi \mapsto \widehat{\mathbf{x}}(\varphi)=\widehat{\varphi}\left(x_{1}, \ldots, x_{N}\right)$ is the unique multiplicative lattice homomorphism from $\mathscr{A}\left(\mathbb{R}_{+}^{N}\right)$ to E such that $\widehat{d t}_{j}\left(x_{1}, \ldots, x_{N}\right)=x_{j}$ for all $j:=1, \ldots, N$. Moreover, $\widehat{\mathbf{x}}\left(\mathscr{A}\left(\mathbb{R}_{+}^{N}\right)\right)=$ $\overline{\left\langle\left\langle x_{1}, \ldots, x_{N}\right\rangle\right\rangle}$.
\triangleleft Take $\varphi \in \mathscr{A}\left(\mathbb{R}_{+}^{N}\right)$. In view of Lemma $1 \varphi=\varphi_{1}+w \varphi_{2}$ with $\varphi_{1} \in \mathscr{H}\left(\mathbb{R}_{+}^{N}\right), \varphi_{2} \in \mathscr{B}_{0}\left(\mathbb{R}_{+}^{N}\right)$, and $w(\mathbf{t})=\left|t_{1}\right|+\ldots+\left|t_{N}\right|$. For $x \in E$ denote by $\dot{x} \in \operatorname{Orth}(E)$ the multiplication operator $y \mapsto x y(x \in E)$. According to [5, Theorem 3.3] and [8, Theorem 2.10] we can define correctly $\widehat{\varphi}_{1}\left(x_{1}, \ldots, x_{N}\right)$ in E and $\widehat{\varphi}_{2}\left(\dot{x}_{1}, \ldots, \dot{x}_{N}\right)$ in $\operatorname{Orth}(E)$, respectively. Now, it remains to put $\widehat{\varphi}\left(x_{1}, \ldots, x_{N}\right):=\widehat{\varphi}_{1}\left(x_{1}, \ldots, x_{N}\right)+\widehat{\varphi}_{2}\left(\dot{x}_{1}, \ldots, \dot{x}_{N}\right) w\left(x_{1}, \ldots, x_{N}\right)$ and check the soundness of this definition. Closer examination of the proof can be carried out as in the case of $\varphi \in \mathscr{A}\left(\mathbb{R}^{N}\right)$, see $[3] . \triangleright$

Lemma 3. Assume that $\varphi \in \mathscr{A}\left(\mathbb{R}_{+}^{N}\right)$ is convex. Then for all $\mathbf{x}:=\left(x_{1}, \ldots, x_{N}\right) \in E^{N}$, $\mathbf{y}:=\left(y_{1}, \ldots, y_{N}\right) \in E^{N}$, and $\pi, \rho \in \operatorname{Orth}(E)_{+}$with $\pi+\rho=I_{E}$ we have $\widehat{\varphi}(\pi \mathbf{x}+\rho \mathbf{y}) \leqslant$ $\pi \widehat{\varphi}(\mathbf{x})+\rho \widehat{\varphi}(\mathbf{y})$, where $\pi \mathbf{x}:=\left(\pi x_{1}, \ldots, \pi x_{N}\right)$. The reverse inequality holds whenever φ is concave.
\triangleleft Let L be the order ideal generated by $\overline{\left\langle\left\langle x_{1}, \ldots, y_{N}\right\rangle\right\rangle}$. Clearly, L is an f-subalgebra of E. If $\pi_{0}:=\left.\pi\right|_{L}$ and $\rho_{0}:=\left.\rho\right|_{L}$ then $\pi_{0}, \rho_{0} \operatorname{Orth}(L)$. For any $\omega \in H(L)$ there exists a unique $\widetilde{\omega} \in H_{m}(\operatorname{Orth}(L))$ such that $\omega(\pi x)=\widetilde{\omega}(\pi) \omega(x)$ for all $x \in L$ and $\pi \in \operatorname{Orth}(L),[3$, Proposition 2.2 (i)]. If ω is nonsingular then $\alpha \omega$ is multiplicative for some $\alpha>0$ [3, Corollary 2.5 (i)], and thus we may assume without loss of generality that $\omega \in H_{m}(L)$. By using (1), the convexity of φ, and the relation $\widetilde{\omega}(\pi)+\widetilde{\omega}(\rho)=1$ we deduce

$$
\begin{gathered}
\omega(\widehat{\varphi}(\pi \mathbf{x}+\rho \mathbf{y}))=\varphi\left(\widetilde{\omega}\left(\pi_{0}\right) \omega(\mathbf{x})+\widetilde{\omega}\left(\rho_{0}\right) \omega(\mathbf{y})\right) \leqslant \widetilde{\omega}\left(\pi_{0}\right) \varphi(\omega(\mathbf{x}))+\widetilde{\omega}\left(\rho_{0}\right) \varphi(\omega(\mathbf{y})) \\
=\widetilde{\omega}\left(\pi_{0}\right) \omega(\widehat{\varphi}(\mathbf{x}))+\widetilde{\omega}\left(\rho_{0}\right) \omega(\widehat{\varphi}(\mathbf{y}))=\omega(\pi \widehat{\varphi}(\mathbf{x})+\rho \widehat{\varphi}(\mathbf{y}))
\end{gathered}
$$

where $\omega(\mathbf{x}):=\left(\omega\left(x_{1}\right), \ldots, \omega\left(x_{N}\right)\right)$. If ω is singular then by above definition we have $\omega(\widehat{\varphi}(\mathbf{x}))=$ $\omega\left(\widehat{\varphi}_{1}(\mathbf{x})\right), \omega(\widehat{\varphi}(\mathbf{y}))=\omega\left(\widehat{\varphi}_{1}(\mathbf{y})\right)$, and $\omega(\widehat{\varphi}(\pi \mathbf{x}+\rho \mathbf{y}))=\omega\left(\widehat{\varphi}_{1}(\pi \mathbf{x}+\rho \mathbf{y})\right)$. At the same time φ_{1} is sublinear, since it coincides with the directional derivative of the convex function φ at zero, see Lemma 3. Thus, by replacing φ by φ_{1} in the above arguments we again obtain $\omega(\widehat{\varphi}(\pi \mathbf{x}+\rho \mathbf{y})) \leqslant \omega(\pi \widehat{\varphi}(\mathbf{x})+\rho \widehat{\varphi}(\mathbf{y}))$. It remains to observe that every $\omega_{0} \in H\left(\left\langle\left\langle x_{1}, \ldots, x_{N}\right\rangle\right\rangle\right)$ admits an extension to $\omega \in H(L)$ and thus $H(L)$ separates the points of $\left\langle\left\langle x_{1}, \ldots, x_{N}\right\rangle\right\rangle . \triangleright$

Lemma 4. If $\varphi \in \mathscr{A}\left(\mathbb{R}_{+}^{N}\right)$ is isotonic, then $\widehat{\varphi}$ is also isotonic, i. e. $\mathbf{x} \leqslant \mathbf{y}$ implies $\widehat{\varphi}(\mathbf{x}) \leqslant \widehat{\varphi}(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in E_{+}^{N}$. (The order in E^{N} is defined componentwise.)
\triangleleft Follows immediately from the above definition (1). \triangleright
$\mathbf{3}^{\circ}$. Everywhere below $(G,+)$ is a commutative semigroup, while E is a uniformly complete f-algebra and $f_{1}, \ldots, f_{N}: G \rightarrow E_{+}$. Let $\mathscr{P}(M)$ stands for the power set of M. Assume that some set-valued map $\mathscr{F}: G \rightarrow \mathscr{P}\left(\operatorname{Orth}(E)_{+}\right)$meets the following three conditions:
(i) π^{-1} exists in $\operatorname{Orth}(E)$ for every $\pi \in \mathscr{F}(u)$,
(ii) $\mathscr{F}(u)+\mathscr{F}(v) \subset \mathscr{F}(u+v)-\operatorname{Orth}(E)_{+}$for all $u, v \in G$, and
(iii) the infimum (the supremum) of $\left\{\pi \widehat{\varphi}\left(\pi^{-1} \mathbf{f}(u)\right): \pi \in \mathscr{F}(u)\right\}$ exists in E for each $u \in G$, where $\mathbf{f}(u):=\left(f_{1}(u), \ldots, f_{N}(u)\right) \in E_{+}^{N}$ and $\pi^{-1} \mathbf{f}(u):=\left(\pi^{-1} f_{1}(u), \ldots, \pi^{-1} f_{N}(u)\right)$.

Lemma 5. Given a function $\varphi: \mathscr{A}\left(\mathbb{R}_{+}^{N}\right)$ and a set-valued map $\mathscr{F}: G \rightarrow \mathscr{P}\left(\operatorname{Orth}(E)_{+}\right)$ satisfying 3 (i-iii), we have the operator $g: G \rightarrow E(h: G \rightarrow E)$ well defined as

$$
\begin{equation*}
g(u):=\inf _{\pi \in \mathscr{F}(u)}\left\{\pi \widehat{\varphi}\left(\pi^{-1} \mathbf{f}(u)\right)\right\}, \quad\left(h(u):=\sup _{\pi \in \mathscr{F}(u)}\left\{\pi \widehat{\varphi}\left(\pi^{-1} \mathbf{f}(u)\right)\right\}\right) . \tag{2}
\end{equation*}
$$

\triangleleft By 3 (i) and Lemma $2 \widehat{\varphi}\left(\pi^{-1} \mathbf{f}(u)\right)$ exists in E and by 3 (iii) g and h are well defined. \triangleright
4°. Now we are able to state and prove our main result. A function $g: G \rightarrow F$ is said to be subadditive if $g(u+v) \leqslant g(u)+g(v)$ for all $u, v \in G$ and superadditive if the reversed inequality holds for all $u, v \in G$.

Theorem. Suppose that the operators $g, h: G \rightarrow E$ are defined as in (2). Then:
(1) g is subadditive whenever f_{1}, \ldots, f_{N} are subadditive and $\varphi \in \mathscr{A}\left(\mathbb{R}_{+}^{\mathbb{N}}\right)$ is increasing and convex;
(2) h is superadditive whenever f_{1}, \ldots, f_{N} are superadditive and $\varphi \in \mathscr{A}\left(\mathbb{R}_{+}^{\mathbb{N}}\right)$ is increasing and concave.
\triangleleft We restrict ourselves to the subadditivity of g. The superadditivity of h can be proved in a similar way. Take $u, v \in G$ and let $\pi \in \mathscr{F}(u)$ and $\rho \in \mathscr{F}(v)$. By 3 (ii) we can choose $\sigma \in \mathscr{F}(u+v)$ with $\sigma \geqslant \pi+\rho$. In view of 3 (i) π, ρ, and σ are invertible. Taking subadditivity of $\mathbf{f}: G \rightarrow E^{N}$ and some elementary properties of orthomorphisms into account we have

$$
\sigma^{-1} \mathbf{f}(u+v) \leqslant \sigma^{-1}(\mathbf{f}(u)+\mathbf{f}(v)) \leqslant \pi \sigma^{-1}\left(\pi^{-1} \mathbf{f}(u)\right)+\rho \sigma^{-1}\left(\rho^{-1} \mathbf{f}(v)\right)
$$

Putting $\tau:=\sigma-\pi-\rho$ and making use of Lemmas 3, 4 and 5 we deduce

$$
\begin{aligned}
& g(u+v) \leqslant \sigma \widehat{\varphi}\left(\sigma^{-1} \mathbf{f}(u+v)\right) \leqslant \sigma \widehat{\varphi}\left(\pi \sigma^{-1}\left(\pi^{-1} \mathbf{f}(u)\right)\right)+\rho \sigma^{-1}\left(\rho^{-1} \mathbf{f}(v)+\tau \sigma^{-1} 0\right) \\
& \leqslant \pi \widehat{\varphi}\left(\pi^{-1} \mathbf{f}(u)\right)+\rho \widehat{\varphi}\left(\rho^{-1} \mathbf{f}(v)\right)+\sigma^{-1} \tau \widehat{\varphi}(0)=\pi \widehat{\varphi}\left(\pi^{-1} \mathbf{f}(u)\right)+\rho \widehat{\varphi}\left(\rho^{-1} \mathbf{f}(v)\right) .
\end{aligned}
$$

By taking infimum over $\pi \in \mathscr{F}(u)$ and $\rho \in \mathscr{F}(v)$ we come to the required inequality. \triangleright
Remark 1. Suppose that the hypotheses of 3 (i-iii) are fulfilled for some fixed $u, v \in G$. Then the inequality $g(u+v) \leqslant g(u)+g(v)(h(u+v) \geqslant h(u)+h(v))$ holds.

Remark 2. An f-algebra E can be identified with $\operatorname{Orth}(E)$ if and only if E has a unit element. Thus, above theorem remains true if E is a uniformly complete unitary f-algebra and the map $\mathscr{F}: G \rightarrow \mathscr{P}\left(E_{+}\right)$satisfies the condition 3 (i-iii) with $\operatorname{Orth}(E)$ replaced by E.
5°. For a single-valued map $\mathscr{F}(x)=\left\{f_{0}(x)\right\}(x \in G)$ with $f_{0}: G \rightarrow \operatorname{Orth}(E)_{+}$we have the following particular case of the above Theorem, see [8].

Corollary 1. Suppose that f_{1}, \ldots, f_{N} are subadditive, $f_{0}: G \rightarrow \operatorname{Orth}(E)_{+}$is superadditive, and $f_{0}(u)$ is invertible in $\operatorname{Orth}(E)$ for every $u \in G$. Then, given an increasing continuous convex function $\varphi \in \mathscr{A}\left(\mathbb{R}_{+}^{N}\right)$, the Peetre-Persson inequality holds:

$$
\begin{equation*}
f_{0}(u+v) \widehat{\varphi}\left(\frac{\mathbf{f}(u+v)}{f_{0}(u+v)}\right) \leqslant f_{0}(u) \widehat{\varphi}\left(\frac{\mathbf{f}(u)}{f_{0}(u)}\right)+f_{0}(v) \widehat{\varphi}\left(\frac{\mathbf{f}(v)}{f_{0}(v)}\right) . \tag{3}
\end{equation*}
$$

The reverse inequality holds in (3) whenever $f_{0}, f_{1}, \ldots, f_{N}$ are superadditive, and φ is an increasing concave function.

Remark 3. The above theorem in the particular case of $E=\mathbb{R}$ was obtained by Persson [12, Theorems 1 and 2], while Corollary 2 covers the "single-valued case" by Peetre and Persson [11]. A short history of the Beckenbach-Dresher inequality is presented in [13]. Some instances of the inequality are also addressed in [9, 10].
$\mathbf{6}^{\circ}$. We need two more auxiliary facts. First of them is a generalized Minkowski inequality.
Lemma 6. Let E and F be uniformly complete vector lattices, $f: E_{+} \rightarrow F$ an increasing sublinear operator. If either and $0<\alpha \leqslant 1$ or $\alpha<0$, then for all $x_{1}, \ldots, x_{N} \in E$ we have

$$
\begin{equation*}
f\left(\left(\sum_{i=1}^{N}\left|x_{i}\right|^{\alpha}\right)^{1 / \alpha}\right) \leqslant\left(\sum_{i=1}^{N} f\left(\left|x_{i}\right|\right)^{\alpha}\right)^{1 / \alpha} . \tag{4}
\end{equation*}
$$

The reverse inequality holds if $f: E_{+} \rightarrow F$ is superlinear and $\alpha \geqslant 1$.
\triangleleft The function $\phi_{\alpha}(\mathbf{t})=\left(t_{1}^{\alpha}+\ldots+t_{N}^{\alpha}\right)^{1 / \alpha}\left(\mathbf{t} \in \mathbb{R}_{+}^{N}\right)$ is superlinear if $0<\alpha<1$ and sublinear if $\alpha \geqslant 1$. In case $\alpha<0$ we define $\phi_{\alpha}(\mathbf{t})=0$ whenever $t_{1} \cdot \ldots \cdot t_{N}=0$ and then ϕ_{α} is superlinear on $\operatorname{int}\left(\mathbb{R}_{+}^{N}\right)$. In all cases $\phi_{\alpha} \in \mathscr{H}\left(\mathbb{R}_{+}^{N}\right)$ and (4) follows from the generalized Jensen inequality in vector lattices, see [4, Theorem 5.2] and [7, Theorem 4.2]. \triangleright

Let A and B be uniformly complete unitary f-algebras, while $E \subset A$ is a vector sublattice. For every $x \in A_{+}$and $0<p \in \mathbb{R}$ the p-power x^{p} is well defined in A, see [3, Theorem 4.12]. If $x \in A_{+}$is invertible and $p<0$, then we can also define $x^{p}:=\left(x^{-1}\right)^{-p}$. It can be easily seen that $\omega\left(x^{p}\right)=\omega(x)^{p}$ for any $\omega \in H_{m}\left(A_{0}\right)$ with an f-subalgebra $A_{0} \subset$ containing x. Assume that $R: E \rightarrow B$ is a positive operator. Given $x \in A$ with $x^{p} \in E$, we define $R_{p}(x):=R\left(x^{p}\right)^{\frac{1}{p}}$. This definition is sound provided that x is invertible in A and $R\left(x^{p}\right)$ is invertible in B.

Lemma 7. If $p \geqslant 1$ and $x_{1}, \ldots, x_{N} \in A_{+}$are such that $x_{1}^{p}, \ldots, x_{N}^{p} \in E$ and $\left(x_{1}+\ldots+\right.$ $\left.x_{N}\right)^{p} \in E$, then the inequality holds:

$$
\begin{equation*}
R_{p}\left(x_{1}+\ldots+x_{N}\right) \leqslant R_{p}(x)+\ldots+R_{p}\left(x_{N}\right) . \tag{5}
\end{equation*}
$$

The reversed inequality is true whenever $p \leqslant 1, p \neq 0$. (In case $p<0$ the positive elements x_{i} and $R\left(x_{i}^{p}\right)$ are assumed to be invertible in A.)
\triangleleft Denote $u_{i}:=x_{i}^{p}, \alpha:=1 / p$, and observe that $\left(u_{1}^{\alpha}+\ldots+u_{N}^{\alpha}\right)^{\frac{1}{\alpha}}=\phi_{\alpha}\left(u_{1}, \ldots, u_{N}\right)$ where $\phi_{\alpha}\left(u_{1}, \ldots, u_{N}\right)$ is understood in the sense of homogeneous functional calculus. In particular, $\left(x_{1}+\ldots+x_{N}\right)^{p}=\left(u_{1}^{\alpha}+\ldots+u_{N}^{\alpha}\right)^{\frac{1}{\alpha}} \in E$ for every $p \neq 0$. We need consider three cases. If $p \geqslant 0$ then by applying Lemma 6 to the right-hand side of the equality

$$
R_{p}\left(x_{1}+\ldots+x_{N}\right)=R\left(\left(u_{1}^{\alpha}+\ldots+u_{N}^{\alpha}\right)^{\frac{1}{\alpha}}\right)^{\alpha}=\left(R\left(\phi_{\alpha}\left(u_{1}, \ldots, u_{N}\right)\right)\right)^{\alpha}
$$

with $u_{i}^{\alpha} \in E$ replaced by x_{i} and making use of $R_{p}\left(x_{i}\right)=R\left(u_{i}\right)^{\alpha}(i:=1, \ldots, N)$, we arrive immediately at the desired inequality (5). The same arguments involving the reversed version of (4) leads to the reversed inequality in (5) whenever $0<p<1$. Finally, in the case $p<0$, again by Lemma 6 , we have $R\left(\left(u_{1}^{\alpha}+\ldots+u_{N}^{\alpha}\right)^{\frac{1}{\alpha}}\right) \leqslant\left(R\left(u_{1}\right)^{\alpha}+\ldots+R\left(u_{N}\right)^{\alpha}\right)^{\frac{1}{\alpha}}$ and rising both sides of this inequality to the α th power we get the reversed inequality (5). \triangleright
7°. Now, we can deduce a generalization of one more Beckenbach-Dresher type inequality due to Peetre and Persson [11].

Corollary 2. Let $S: E \rightarrow F$ and $T: E \rightarrow \operatorname{Orth}(F)$ be positive operators. Take $x_{1}, \ldots, x_{N} \in A_{+}$such that $x_{i}^{\alpha}, x_{i}^{\beta},\left(\sum_{i=1}^{N} x_{i}\right)^{\alpha},\left(\sum_{i=1}^{N} x_{i}\right)^{\beta} \in E(i:=1, \ldots, N)$. If $p \geqslant 1$,
$\beta \leqslant 1 \leqslant \alpha, \beta \neq 0$, and $T\left(x_{i}^{\beta}\right)$ are invertible in $\operatorname{Orth}(F)$ whenever $\beta<0$, then

$$
\begin{equation*}
\frac{\left(S\left(\left(\sum_{i=1}^{N} x_{i}\right)^{\alpha}\right)\right)^{p / \alpha}}{\left(T\left(\left(\sum_{i=1}^{N} x_{i}\right)^{\beta}\right)\right)^{(p-1) / \beta}} \leqslant \sum_{i=1}^{N} \frac{\left(S\left(x_{i}^{\alpha}\right)\right)^{p / \alpha}}{\left(T\left(x_{i}^{\beta}\right)\right)^{(p-1) / \beta}} . \tag{6}
\end{equation*}
$$

\triangleleft Put $G=E, f(x):=\mathbf{f}(x):=S\left(x^{\alpha}\right)^{1 / \alpha}, f_{0}(x):=T\left(x^{\beta}\right)^{1 / \beta}, N=1$, and $\varphi(t)=t^{p}$ in Corollary 1. By Lemma $7 f$ is subadditive, f_{0} is superadditive, and $f_{0}\left(x_{i}\right)$ is invertible in $\operatorname{Orth}(F)$. Moreover, $\varphi \in \mathscr{A}\left(\mathbb{R}_{+}\right)$is convex and increasing whenever $p \geqslant 1$. Now, the desired inequality is deduced by induction. \triangleright

Remark 4. If $0<p<1$ then the concave function $\varphi(t)=t^{p}$ is not in $\mathscr{A}\left(\mathbb{R}_{+}\right)$and we cannot guarantee the reversed inequality in (6). Nevertheless, in the case that F is a unitary f-algebra one can take $\varphi \in \mathscr{B}\left(\mathbb{R}_{+}^{N}\right)$ in Peetre-Persson's inequality (3) and thus the reversed inequality is true in (6) whenever $0<p \leqslant 1, \alpha, \beta \leqslant 1$, and $\alpha, \beta \neq 0$.

References

1. Aliprantis C. D., Burkinshaw O. Positive operators.-London etc.: Acad. Press Inc., 1985.-xvi +367 p .
2. Beckenbach E. F., Bellman R. Inequalities.-Berlin: Springer, 1983.
3. Buskes G., de Pagter B., van Rooij A. Functional calculus on Riesz spaces // Indag. Math.-1991.Vol. 4, № 2.-P. 423-436.
4. Kusraev A. G. Homogeneous functional calculus on vector lattices.-Vladikavkaz: Southern Math. Inst. VSC RAS, 2008.-34 p.-(Preprint № 1).
5. Kusraev A. G. Functional calculus and Minkowski duality on vector lattices // Vladikavkaz Math. J.-2009.-Vol. 11, № 2.-P. 31-42.
6. Kusraev A. G., Kutateladze S. S. Subdifferentials: Theory and applications.-Dordrecht: Kluwer Academic Publ., 1995.-ix+398 p.
7. Kusraev A. G. Inequalities in vector lattices // Studies on Mathematical Analysis, Differential Equation, and their Applications / Eds. Koroben̆nik Yu. F., Kusraev A. G.-Vladikavkaz: SMI VSC RAS, 2010.P. 82-96.-(Review of Science: The South of Russia).
8. Kusraev A. G., Kutateladze S. S. Envelopes and inequalities in vector lattices.-(to appear).
9. Mitrinović D. S., Pečarić J. E., Fink A. M. Classical and new inequalities in analysis.-Dordrecht: Kluwer, 1993.-xvii +740 p.
10. Pečarić J. E., Proschan F., Tong Y. L. Convex functions, partial orderings, and statistical application.Boston a. o.: Academic Press, 1992.-xiii+469 p.
11. Peetre J., Persson L.-E. A general Beckenbach's inequality with applications // Function Spaces, Differential Operators and Nonlinear Analysis. Pitman Res. Notes Math. Ser. 211.-1989.-P. 125-139.
12. Persson L.-E. Generalizations of some classical inequalities and their applications // Nonlinear Analysis, Function Spaces and Applications / Eds. Krbec M., Kufner A., Opic B., Rákosník J.- Leipzig: Teubner, 1990.-P. 127-148.
13. Varošanec S. A generalized Beckenbach-Dresher inequality // Banach J. Math. Anal.-2010.-Vol. 4, № 1.-13-20.

Anatoly G. Kusraev
Southern Mathematical Institute
Vladikavkaz Science Center of the RAS, Director
RUSSIA, 362027, Vladikavkaz, Markus street, 22
E-mail: kusraev@smath.ru

НЕРАВЕНСТВО ТИПА БЕККЕНБАХА - ДРЕШЕРА В РАВНОМЕРНО ПОЛНЫХ f-АЛГЕБРАХ

А. Г. Кусраев

Установлено общее неравенство типа Беккенбаха - Дрешера в равномерно полных f-алгебрах.

Ключевые слова: f-алгебра, векторная решетка, решеточный гомоморфизм, положительный оператор.

[^0]: © 2011 Kusraev A. G.

