BirajgukaBka3ckuii MaTeMaTHICCKUH Ky DHAJT

2011, Tom 13, Boemyck 1, C. 44-58

VIIK 517.9

ON THE EXPANSIONS OF ANALYTIC FUNCTIONS
ON CONVEX LOCALLY CLOSED SETS IN EXPONENTIAL SERIES

S. N. Melikhov, S. Momm

In memory of G. P. Akilov

Let Q be a bounded, convex, locally closed subset of C¥ with nonempty interior. For N > 1 sufficient
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linear right inverse for the representation operator are proved.
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Introduction

In the late sixties Leont’ev (see [10]) proved that each analytic function f on a convex
bounded domain @) C C can be expanded in an exponential series » jeNCi exp(A;-). This
series converges absolutely to f in the Fréchet space A(Q) of all functions analytic on @, and
its exponents \; are zeroes of an entire function on C which does not depend on f € A(Q).
A formula for the coefficients of a some expansion in such exponential series (with the help
of a system orthogonal to (exp();-))jen) was obtained only for the analytic functions on the
closure of ). Later similar results for the analytic functions on convex bounded domain
Q C C¥ were obtained by Leont’ev [9], Korobeinik, Le Khai Khoi [3] (if Q is a polydomain)
and Sekerin [15] (if @ is a domain of which the support function is a logarithmic potential).

In [4, 5, 11] was investigated a problem of the determination of the coefficients of the
expansions of all f € A(Q), where @ is a convex bounded domain in C, in following setting,.
Let K C C be a convex set and suppose that L is an entire function on C with zero set
(Aj)jen and with the indicator Hgy + Hg, where Hg and H is the support function of @
resp. of K. By A;(Q) we denote a Fréchet space of all number sequence (c;);en such that
the series .\ ¢jexp(\;-) converges absolutely in A(Q). In [4, 5, 11] were established the
necessary and sufficient conditions under which a sequence of the coefficients (¢;)jen € A1(Q)
in a representation f = . ycjexp();) can be selected in such way that they depend
continuously and linearly on f € A(Q). In other words, in [4, 5, 11] was solved the problem
of the existence of continuous linear right inverse for the representation operator R : A1(Q) —
A(Q), ¢ 3 encjexp(A;-). Note that in [4, 5] a formula for continuous linear right inverse
for R (if it exists) was not obtained.
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In the present article we consider the following situation. Let Q@ € CV be a bounded
convex set with nonempty interior. We assume that @ is locally closed, i. e. @ has a funda-
mental sequence of compact convex subsets @, n € N. By A(Q) we denote the space of all
analytic functions on @ with the topologie of proj,._,, A(Q), where A(Q,) is endowed with
natural (LF)-topologie. We put ey(z) := exp(z:%:1 AnZm)s A,z € CN. For an infinite set
M c NV for a sequence (Ak)) (k)em C CNY with [A(ky| — 00 as [(k)| — oo we define a locally
convex space A1(Q) of all number sequence (c())(x)enm such that the series Z(k)eM Ck)EA )
converges absolutely in A(Q). The representation operator ¢ — Z(k) €M C(k)€A(y,y aps con-
tinuously and linearly A;(Q) into A(Q). We solve the problem of the existence of a continuous
linear right inverse for R.

In this paper for N > 1 we assume that (Ax))@x)en is a subset of zero set of an entire
function L on CN with “planar zeroes” and with indicator H Q +Hp, where Hg and H are
the support functions of @ resp. of some convex compact set K ¢ CV. By [15] such function
L exists if and only if the support function of cl@ + K is so-called logarithmic potential (for
N =1 a function L exists for each @ and each K). In contrast to [4, 5] here we do not use
the structure theory of locally convex spaces. As in [11], we reduce the problem of existence a
continuous linear right inverse for the representation operator to one of an extension of input
function L to an entire function L on C2V satisfying some upper bounds. With the help of L
we construct a continuous linear left inverse for the transposed map to R. Using O-technique,
we obtain that the existence of such extension L is equivalent to two conditions, namely, to
the existence of two families of plurisubharmonic functions, first of which is associated only
with @@ and second is associated with K and (). The evaluation of first condition was realized
in [21]. For the evaluation of second condition we adapt as in [21] the theory of the boundary
behavior of the pluricomplex Green functions of a convex domain and of a convex compact
set in CV which was developed in [23, 25].

For N =1 we obtain more complete results. In the first place we prove the criterions for
the existence of a continuous linear right inverse for R without additional suppositions on @
and K. Secondly, with the help of a function L as above we give a formula for a continuous
linear right inverse for R.

1. Preliminaries

1.1. Notations. If B ¢ C¥, by clB and int B we will denote the closure and the interior
of B, respectively. By int,.B, d.B we denote the relative interior and the relative boundary

of B with respect to a certain larger set. For notations from convex analysis, we refer to
Schneider [26].

1.2. Definitions and Remarks. A convex set Q C CV admitting a countable fun-
damental system (Q,)nen of compact subsets of @Q is called locally closed. Let Q@ C CV be
a locally closed convex set. We will write w := Q N 9,Q, where 9, denotes the relative
boundary of @ in its affine hull. By [21, Lemma 1.2] w is open in 9,Q. We may assume that
the sets Q,, are convex and that Q,, C Q.41 for all n € N. A convex set Q C CV will be called
strictly convex at d,w if the intersection of @ with each supporting hyperplane to c1@Q ¢ CV
is compact. If int Q # @, @ is strictly convex at J,w if and only if each line segment of w is
relatively compact in w.

By [13, Lemma 3] Q C CV is strictly convex at d,w if and only if @ has a fundamental
system of convex neigborhoods.

1.3. Convention. For the sequel, we fix a bounded, convex and locally closed set
Q c CV with 0 in its nonempty interior and with a fundamental system of compact convex
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subsets @, C Qn+t1, n € N. By (wp)nen we shall denote some fundamental system of compact
subsets of w = Q N J,Q.
K will always denote a compact convex set in CV.

1.4. Notations. For each convex set D C CV we denote by Hp the support function
of D,i.e. Hp(z):= sup,cp Re(z,w), z € CV. Here (z,w):= Z;V:1 zjw;. We put H,, := Hg,,
n € N.

Let ex(z) := exp()\,z), A,z € CN. For a locally convex space E by Ej we denote the
strong dual space of F.

1.5. Function spaces. We set |2| := (2,2)1/2, 2 e CN; U(t,R):= {z € CN : |t—2| < R},
teCN,R>0;U:=U(0,1). For all n,m € Nlet E,, p, := A (Qn + %U) denote the Banach
space of all bounded holomorphic functions on @, + %U , equipped with the sup-norm. We
consider the spaces A(Qy) = U, en En,m of all functions holomorphic in some neighborhood
of Qn, n € N, and endow them with there natural inductive limit topology. By A(Q)
we denote the vector space of all functions which are holomorphic on some neighborhood
of Q. We have A(Q) = (e A(Qr), and we endow this vector space with the topology of
A(Q) := proj._,, A(Qn). This topology does not depend on the choice of the fundamental
system of compact sets (Qn)nen. If @ is open, A(Q) is a Fréchet space of all holomorphic
functions on Q.

For all n,m € N let

Ay = {f € A((CN) s = selgj)v |f(2)] exp ( — Hy(z) — \z!/m) < oo}

and
Ag:=ind proj A, .
n— "—m

1.6. Duality. The (LF)-space A(Q) := ind,—, A(Qn); and Aq are isomorphic by the
Laplace transformation

FAQ) — Ag, F(p)(2):=ple.), zeCN.

In addition (LF)-topology of A(Q)" equals the strong topology.

The assertion has been proved in [21, Lemma 1.10] (see Remark after 1.10, too)
If we identify the dual space of A(Q) with Ag by means of the bilinear form (-,-), then
{ex, )y = f(\) for all A € CV and all f € Ag.

1.7. Sequence spaces. Representation operator. Let M C N¥ be an infinite set
and (A())kyemr C CV be a sequence with [Ay)| — oo as |(k)| — co. For all n,m € N we
introduce the Banach spaces

Apm(Q) = {C = (ca)mem CC: > leglexp (Ha(Aw) + Al /m) < OO},
(k)yeM

Knm(Q) := {C = (ck))myem C C: (:)ul?w eyl exp (— Hn(Ag)) — [Awyl/m) < OO}
(S

and put

Al (Qn) = ,lﬁlg An,m(Q)7 AI(Q) = pio.] Al (Qn)v Koo(Q) = lnng I{)_I‘O.] Kn,m(Q)
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We note that the series Z(k)eM C(k)€x, converges absolutely in A(Q) if and only if ¢ € A1(Q)
(see [2, Ch.1, 8§81, 9]).

The operator R(c) := 3_ e C(k)€ry, Mmaps continuously and linearly A1(Q) in A(Q).
We call R the representation operator. By Korobeinik [2], if R : A1(Q) — A(Q) is surjectiv,
(exy ) (k)ens 1s called an absolutely representing system in A(Q).

Let e(k) = (5(k),(m))(m)€Ma (k) € M, where 6(k),(m) is the Kronecker delta.

1.8. Duality. (i) The transformation ¢ — (p(er)))menm s an isomorphism of (LF')-
space M(Q)' = ind,— A1(Qn);, onto Koo(Q). The duality between A1(Q) and Ko (Q) is
defined by the bilinear form (c,d) := Z(k)eM (k) d(k)-

(7) A transposed map R’ : Ag — K«(Q) to R : A1(Q) — A(Q) is the restriction operator
= (FQw)) enm -

(#i) R has a continuous linear right inverse if and only if R' has a continuous linear left
inverse.

< The assertions (i) and (ii) were in [13, Lemma 6] proved.

(iii): This can be proved in the same way as (i) = (i7) in [21, Lemma 1.12]. (We note
that we can not assume in advance the surjectivity of R.) >

1.9. Notations. Let S := {z € CV : |z| = 1}. For a convex set D ¢ C, v C D and
A C S we define

S,(D) :={a € S: Re{w,a) = Hp(a) for some w € v}

and
FA(D) :={w € D : Re{w,a) = Hp(a) for some a € A}.

We will write S, := 5,(Q), A := Sp,(x)(K), So := S\S..

DEFINITION 1.10. (a) Given an open subset B C S and a compact convex set K C CV.
K is called smooth in the directions of the boundary of B if for each compact set kK C B the
compact set & := Sp, (k) (K) is still contained in B.

Note that the condition is fulfilled if 9K is of class C.

(b) A convex compact set K C CN is called not degenerate in the directions of B C S,
if K is not contained all in the supporting hyperplane {z € CV Re(z,a) = Hg(a)} of K for
each a € B.

Note that the condition is fulfilled if int K # &.

REMARK 1.11. (a) Under the hypotheses of the Definition 1.10 (a) the following holds:
Let S; C S be an open neighborhood of S\ B (with respect to S). For k := S\S1, the set & is
a compact subset of B. Hence if S C S\k is compact, we have S”g Nk = & and thus 55 C 5.
(Otherwise it would follow that &£ NSy # &.)

(b) Let K have 0 as an interior point. K is smooth in the directions of the boundary of B
if and only if the convex set int K® U w’ is strictly convex at d,w’, where o’ := dK° N T'(B),
K% :={2e€ CN|Hg(z) <1} and I'(B) := {tb|t > 0}.

2. Conditions of existence of a continuous linear right inverse
for the representation operator

2.1. Notations, Definitions and Remarks. (a) Let f be an entire functions of
exponential type on CV. By h; we denote the (radial) indicator of f, i. e.

W (2) = limsup(lim sup log| f (r2")| /r) for all z € chV.

z'—z r—+00
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(b) An entire function f of exponential type on C is called function of completelly regular
growth (by Levin—Pfliiger), if there is a set of circles U(uj,7;5), 7 € N, with |u;| — oo as
j — o0, such that hmR—wo%Z\MKR r; = 0 and outside of UjenU(p;,7;) the following
asymptotic equality holds:

log|f(2)| = h}(2) +0(]2]) as |z| — oc.

By Krasichkov-Ternovskii [6], in Definition (b) we can choose the exclusive circles U(j;,7;)
so that they are mutually disjoint.

(c) By Gruman [18] an entire function f of exponential type on C is called function of
completelly regular growth, if for almost all a € S the function f(az) of one complex variable
has completelly regular growth on C.

(d) There are other definitions of the functions of completelly regular growth of Azarin [1]
and of Lelon, Gruman [8, Ch.IV, 4.1]. By Papush [14], if f is an entire function on C" with
“planar” zeroes, i. e. the zero set {z € CV : f(z) = 0} of f is the union of the hyperplanes
{z € CV: (z,ar) = &}, ar, € S, ¢, € C, k € N, all these definitions (for f) are equivalent.
From this and from [7, 22] it follows that an entire function f on C" with “planar” zeroes
has completely regular growth on C if and only if f is slowly decreasing on C*.

We recall the some definitions and results from Sekerin [15].

2.2. A special entire function. A structure of the exponents ). (a) Below we
shall exploit an entire function L on CV of order 1, which satisfies the following conditions:
(i) The zero set V(L) of L is a sequence of pairwise distinct hyperplanes Py := {z € CV :
(ak,z) = ¢k}, k € N, where |ax| = 1 and ¢, # 0. If for k1 < ko < ... < kn the intersection
Py, 0 Py, N ... N Py is not empty, then it consits of a single point A, where (k) denotes
multiindex (k1,ke,...,ky). Further M is the set of the such multiindexes (k). Moreover,
Ly (Aky) # 0, where L)(2) := L(2)/lx)(2) and l()(2) := Hé-v:l«akj,z} —c;), (k) € M.
(ii) L is a function of completely regular growth with indicator Hg + H.

(iti) |Lwy(Aw))| = exp(Ho(A)) + Hr (Ax)) + 0(|Ag)])) as [(k)[ — oc.

We write I (2) := (ax,2) — cx, 2 € CN, k€ N.

(b) (i) By [15, Theorem 1], for each f € Ajng+r the Lagrange interpolation formula
holds:

f= Y 2800 aec, 0
e L)

where the series converges uniformly on compact sets of CV. From (1) it follows that
(A(k)) (ke is the uniqueness set for Aine gk, i. e. from f € A(CY), hy(2) < Ho(z)+ Hi (2)
for all z € CV\{0} it follows that f = 0.

(ii) There is a function a(z) = o(|z|) as |z| — oo such that |L(2)| < exp(Hg(z) +
Hy(2) + a(z)) for all z € CN and all (k) € M.

(¢) A plurisubharmonic function v on C* will be called a logarithmic potential if there
exists a Borel measure p > 0 on [0,00) x SV such that for every R € (0,00) there is a
pluriharmonic function ug on U (0, R) with

u(z) = / log|t — (z,w)| du(t) + ur(z) for all z € U(0,R).
[0,R]x SN

By [15] for a bounded convex domain D with 0 € D the support function Hp is a
logarithmic potential for example if D is a polydomain, a ball, an ellipsoid, a polyhedra with
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symmetric faces, and in the case of C?, if D = Dy +iDs, where D; and Dy are any centrally
symmetric convex domains in R?; if D is symmetric with respect to 0 and cl D is a Steiner
compact set (see Matheron [19, §4.5]).

For each bounded convex domain D C C with 0 € int D the function Hp is a logarithmic
potential.

(d) By [15, Theorem 5], there exists a function L satisfying the conditions (i)—(iii) in 2.2
(a) if and only if Hgy + H is a logarithmic potential. Hg + Hg is a logarithmic potential if
Hg and Hg are the logarithmic potentials.

(e) Let Hgyx = Hg+ Hi be a logarithmic potential. By [15] the representation operator
R : A(int@Q + K) — A(int Q + K) is surjective. By [13, Theorem 14] R : A1(Q) — A(Q)
is surjective, if @ is strictly convex at 0,w, K is smooth in the directions of 0,5, and not
degenerate in the directions of S,,,.

Theorem 2.3. Let Q) be strictly convex at O,w and L be an entire function on CV
satisfying the conditions 2.2 (a). Then (II) < (III) = (I):

(I) The representation operator R : A1(A) — A(Q) has a continuous linear right inverse.

(IT) There is a positively homogeneous of order 1 plurisubharmonic function P on C2V
such that P(z,z) > Hg(z) + Hi (%) and (Vn) (3n') (Vs) (3s') with

P(z, 1) < Hu(2) + |2|/s + Hc () + Ho(u) — Hn(p) — |ul/s" (Y2, € CY).

(IIT) There are the plurisubharmonic functions us,v¢, t € S, on CV such that u.(t) > 0,
v (t) > 0 and (Vn) (3In') (Vs) (3¢') with
(a) ut(2) < Hp(2) — Hp(t) + |2|/s — 1/s" and
(b) (1) < Hiclpe) + Hol) — () — Hic(6) — Ho(£) + Ho (£) — |l /' + 1/ for all 2, € TV
and allt € S.

< (II) = (III). We may choose
uilz) = Plet) — Ho(t) — Hic(t), wi(w) = P(t,n) — Halt) — Hic(t)

for all z,u € CN and t € S.
(II1) = (II). We put

Py(z,p):= (igg (ue(2) +ve(p) + Ho(z) + HK(,u)))*, z,ueCN,

where f* denotes the regularization of a function f. Py is the plurisubharmonic function
on C?N with
P(z,2) > Ho(z) + Hx(2) (VzeS).

By (III) we have: (Ym) (3n') (Vs) (37) with
ug(2) < Hy(2) — Hp(t) + |2|/s — 1/r for all z € CY and all t € S
and (Vn) (3m) (Vr) (3¢) with
vr(p) + Ho(t) + Hi (t) < Hi (n) + Ho(p) — Hu(p) + Hyn(t) — |pl/s +1/r

for all u € CN and all t € S. By adding the last inequalities, we obtain that (Vn) (3n’) (V)
(3¢') with

ue(2) +v(p) + Ho(t) + Hi (t) < Hy(2) + Hi (1) + Ho(p) — Hu(p) + |2l/s = |ul /¢’
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for all z,u € CV and ¢t € S. From this it follows that Py satisfies the upper bounds in (II).
As P we may choose P(z,p) := (limsup,_, o P(tz,tu)/t)*, z,u € CV.

(III) = (I). By (the proof of) [16, Theorem 4.4.3] (see [8, Theorem 7.1], too) there is a
L € A(C?N) with L(z,2) = L(z) and (Yn) (3n) (Vs) (3s") 3C): (Vz,u e CN)

|L(z,1)| < Cexp (Hw(2) + |21/s + Hr (1) + Ho(n) — Ha(p) — |ul/s"). (2)
We define R
() () L(k)(z)L(Z7/\(k))c . LN
1(e)(2) - (k)gM LaOqy) W ¢EHx(@), 2eC (3)

From (2) it follows that the series in (3) converges absolutely in Asgy k. (By [21, Remark 1.5]
2Q + K is locally closed and (2Q,, + K)nen is a fundamental system of compact subsets of
2Q) + K.) Hence k1 maps Ko (Q) in Aggyx continuously (and linearly). Since, by (2), for
all f € Ag and z € CV the function L(z,-)f belongs to Ajy 0+K, by 2.2 (b) for all z € CV

Ly (2) L2 A\x))
Ly (M)

r(R()) = Y FOwy) = Lz 2)f(2) = L(2) f (2).

(k)eM

From here it follows that k1 0R’ is the operator of multiplication by L. By [21, Proposition 2.7]
there is a continuous linear left inverse kg : Asgix — Ag for K1oR'. The operator k := K10k
is a continuous linear left inverse for R’.

Now we shall evaluate the abstract condition (III) (b) of Theorem 2.3. The condition
(II) (a) was evalueted in [21, Proposition 3.6]. >

We recall some definitions from [23] and [25].

DEFINITION 2.4. If D ¢ CV is bounded, convex and ¢ > 0, let ’U%D7C be the largest
plurisubharmonic function on C¥ bounded by Hp and with v?{D’ (2) < cloglz| + O(1) as
|z| — 0. A function CIO{D: S — [0, 0] is defined by

{zecC": U%D’c(z) =Hp(2)} ={Xa:a€s, 1/C%D(a) <A< oo}

If 0 € int D and if C' > 0, let vFf - be the largest plurisubharmonic function on cN
bounded by Hp and with vy ~(2) < Clog[z[+0(1) as |2| — co. A function Cg : S — [0, 0]
is defined by

{zeCN: v, c(2) =Hp(z)} ={Xa:ae S, 0<A<1/CF, (a)}.

Instead C’%D and CF we shall write briefly C’% resp. C7y.

Proposition 2.5. Let Q be strictly convex at the 0,w and suppose that 0 € int K. For
N > 1 assume that K is smooth in the directions of 0,.S,,. The following are equivalent:

(i) There are plurisubharmonic functions v; (t € S) on CN with v(t) > 0 such that: (Vn)
(3n') (Vs) (3s') with

w< Hxk+Hg—H,— ||/ — Hx(t) — Hg(t) + Hy(t) +1/s (VteS9).

ii) 1/CY is bounded on some neighborhood of Sy and C$° is bounded on each compact
(i) 1/Ck g K p
subset of S,,.
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< (i) = (ii). Choose n' according to (i) for n = 1. On S, we have H,, < Hg. Thus there
are a neigborhood S of S, and some € > 0 with H,, +¢ < Hg on S. We put

vi= (suP(vt + HK(t)))*
tesS

This function is plurisubharmonic on CV with v > Hg on S and satisfies: (Vn) (3n’) (Vs)
(3 ) such that
v< Hig + ‘ . ]/n—l— ma;{—HQ(t) + Hn/} + 1/8.
tesS

Since H,y < Hg, this gives v < Hg on CN. The bounds for n = 1 give v(0) < —e.

From [25, 2.14] it follows that 1/C% is bounded on S.

Let K C S,,. We define

v := (sup(vy + HK(t)))*
tex

This function is plurisubharmonic on CV with v > Hg on  and satisfies: (Vn) (3n’) (V)
(35") such that v < Hx + Hg — Hy, — |- |/s'+1/s < Hx + Hg — Hy, + 1/s. This shows that
v< Hg.

Now choose n with k C S,,,,, i. e. with Hg = H,, on k. Choose n’ > n according to (i).
Choose s’ for s = 1. Then there is a neighborhood & of  in S such that

Hg—Hy—|-|/s' < —|-|/(2s") on (k)

and thus
v< Hg —1|-|/(28) +1 on T'(R).

In order to reach our claim that C% is bounded on k, we need an estimate like the previous
one on all CV (not only on the particular cone). For this purpose we are going to modify v.
First note that, if N = 1, it follows from what we have already proved that 0K has to be of
class C1 (see [20, 2.10, 2.14]). For N > 1 we use our special hypothesis. For this reason we
may assume that we have constructed v for the set & instead of .
Define
L(z) := sup Re(w,z), zeCV.
wEFy,

The positively homogeneous function L satisfies L < Hx on CV, and L = Hg on k. If
L(a) = Hk(a), there is w € F,, with Re(w,a) = Hg(a), hence a € Sp,. Thus L < H on S
outside the compact set . We replace v by 9 := v/2 + L/2 and obtain & < Hx on CV,
0= Hg on k and © < Hg outside a neighborhood of the origin. By [23, 2.1] this shows that
C% is bounded on .

(ii) = (i). By the hypothesis, 1/C% is bounded on some neighborhood S of Sp. Hence
there is ¢ > 0 such that the plurisubharmonic function U%m . equals Hg on S. Let n € N.
Since H,, < Hg on Sy, there is a compact neighborhood S,, of Sy with H,, < Hg on S,,. We
may assume S, C S,_1 C...C S C S. Since C% is bounded on S\S,,, there is C;, > 0 with
n =V o, = Hk on S\Sp+2.

Again for N = 1 it follows from (ii) that OK is of class C''. For N > 1 we apply the extra
hypothesis to obtain (as in the first part of the proof) a positively homogeneous function
L,, bounded by H on CV, which equals H on k = Sn+1, and such that L, < H outside
the compact set S,41 C S, (see Remark 1.11 (a)). Then the plurisubharmonic function
00 = ’U%K’C/Q + L, /2 satisfy v, < Hxg on CV, v, = Hg on Spy1, vp < (Hi + Ly,)/2 < Hg
on S\S,.

(Y
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Fix n € N. Since v0 < (Hg + L,,)/2 < Hx + Hg — H,, on S, and since v3(0) < 0, there
is n with
v) < Hg + Hg— H, —D/2—1/A on CV,
where
D= Hy + Hg — Hy — (Hy + Ln)/2 = (Hx — Lyn)/2 + Hg — H,.

Choose n' with Hyg — H,y < 1/n on Spy1. Then for each s there is s’ with D/2 > |- |/s
on CV such that

v < Hg +Hg — Hy, — | -|/s' — Ho(t) + Hy(t) +1/s (Yt € Spy1).

o0

For the functions v;° we get: Choose n’ (in addition) so large that Hg = H, on S\Sy2. For
each s we choose s’ (in addition) so large that v3° < Hgx — |- |/s’ + 1/s (see Definition 2.4).
This gives

v’ <Hg+Hg—H,—|-|/s = Ho(t) + Hy(t) +1/s (Vi € S\Sp+2).

n

Note that v? > ... > vg > USLH and that v{° < ... < vp° < w5, That is why for each
I € N the following holds: (Vn) (3n’) (Vs) (3 s) with

o) < Hg + Hg — Hy, — |- |/s' — Ho(t) + Hy(t) +1/s (Yt € Spi1),
and (Vn) (3n) (Vs) (3¢') with

Uloo <Hg+Hg—-H, — ’ . ‘/S/ — HQ(t) + Hn/(t) + 1/8 (Vt € S\Sn+2)
By the construction, lim;_, vlo =: vgo exists and defines a plurisubharmonic function with
v), = Hg on S.
For t € S\Ss define ¥y := v{°. For t € S;;1\S)42 We put ¥ := v? /2 +v7°/2. For t € Sy we
define ¥, := v0,. Obviously 0;(t) = Hg(t) for all t € S.
Let t € Sj11\Si2. For n <1 and n/, s and s’ as above we get

U < (Hg + Hg — Hy — | -|/s" = HQ(t) + Hy(t) +1/s) /2 + Hr /2.

By the strict convexity of @ at d,w (see [21], the proof of Proposition 3.6), there is n” such
that (Hg + H,)/2 < Hy» and thus (Hg — H,)/2 > Hg — H,». This gives

0 < Hx+Hg— Hy,—|-1/(28') — Ho(t) + Hpr (t) + 1/(2s).
For n > 1 and n’/, s and s’ as above we get
Uy < HK/2+ (HK+HQ —H, — ’ . ‘/S,—HQ(t)—i-Hn/(t) +1/8)/2.

As above we get the desired estimate.

For t € Sy = (;en St We see as in the first part of the previous arguing that o; = v
satisfies these estimates for all n (<1 = c0).

For t € S\S3, as in the second part of the arguing just done, we see that these estimates
hold for all n (=1 =1).

Finally we put vy := 0y — Hg(t), t € S and are done. >

0
00

REMARK 2.6. Let @ be strictly convex at the d,w. By [21, Proposition 3.6] the following
are equivalent:
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(i) There are plurisubharmonic functions u; (t € S) on CV with ug(t) > 0 such that: (Vn)
(3n') (Vs) (3¢') with

up(2) < Hy(2) — Ho(t) + |2|/s —1/s' (VzeCN, te8).

ii) C% is bounded on some neighborhood of Sy and 1/CY is bounded on each compact
Q Q
subset of S,,.

Theorem 2.7. Let Q be strictly convex at the 0,w and suppose that 0 € int K and L is
a function as in 2.2 (a). For N > 1 assume that K is smooth in the directions of 0S,,. If C§
and 1/CY. are bounded on some neighborhood of S, 1/082 and C§ are bounded on each
compact subset of S, then the representation operator R : A1(Q) — A(Q) has a continuous
linear right inverse.

<1 The assertion hold by Theorem 2.3, Proposition 2.5 and Remark 2.6. >

The equivalent conditions of Theorem 2.7 are fulfilled if Q) and 0K are of Holder class
C1* for some A > 0. They are not fulfilled if Q or K is a polyedra, and for N = 1 if 9Q or
OK has a corner [24].

3. The case of one complex variable

In this section we consider the case N = 1 for which the results of the previous sections
can be improved.

Convention 3.1. Further L is an entire function on C satisfying following conditions:

(i) The zero set of L is a sequence of pairwise distinct simple zeros \g, k € N, such that
|Ak| < |Aky1| for each k € N.

(ii) L is a function of completely regular growth with indicator Hg + H.

(iii) The asymptotic equality holds:

IL'(A\r)| = exp(Ho (M) + Hi (M) + 0(|Ak])) as k — oo.

Such function L exists (see for example [10]).

Leont’ev (see [10]) introduced an interpolating function, which is defined with the help of
an entire function of one complex variable. Leont’ev’s interpolating function is a functional
from A(cl@ + K)"\A(Q)' for every K (if @ # c1@). With the help of an entire function of
two complex variables we give the analogous definition of an interpolating functional from
AQ).

DEFINITION 3.2. Let L be an entire function on C? such that L(-,u) € Ag for each
u € C. Q-interpolating functional we shall call a functional

Q; (oo, f) = ﬁ—l(ic,m)t( [ re-gene) d5>, 2 eC, feAQ)
0

where the integral is taken along the interval [0, ¢].

We show certain properties of ;.

Lemma 3.3. (a) Q; (-, i, f) € Ag for all p € C and f € A(Q).

(b) For all z,;u € C the equality Q; (2,2, e,) = I(j1, 2) holds where a function | € A(C?) is
such that L(p, z) — L(z,2) = l(, 2) (1 — 2).

(¢) Q5 (1, 2,-) € A(Q)" for all z,u € C.
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< (a): We fix p € C, f € A(Q) and a domain G with Q@ C G and f € A(G). We choose
a contour C' in G which contains in its interior the conjugate diagram of L(-, p). If v(-, u) is
Borel conjugate of L(-, 1), we have:

21
C

t
Qp(zm, f) = i./v(tvu) (/f(tf)exp(ZE)df) dt, zeC.
0
Since the function (¢, 1) — (¢, ) (fg ft —&exp(z€) df) is continuous by t € C and entire
by z, the function Q;(z,u, f) is entire (with respect to z). From direct upper bounds for
17 (2, 1, f)] it follows that Q; (-, pu, f) € Ag.
(b): Obvious.
(c): Since the map f +— fg f(t—¢&) exp(z£)de, t € Q, is continuous and linear in A(Q)
and .Z~1(Q(-, p)) is a continuous and linear on A(Q), the functional Q¢(z, i, -) is continuous
and linear on A(Q), too. >

Lemma 3.4. We assume that a function L, as in 3.2, satisfies in addition the following
conditions: L(z,z) = L(z) for each z € C and (Vn) (In') (Vs) (3¢') (3C) with

L(z,1)| < Cexp (Hy (2) + Hi(p) + Hop) — Ho(p) + |2|/s — |ul/s") (V2,1 € C).

Then II(f) := (Q7 (M, Ak f)/L/()\k))keN’ f € A(Q), is continuous linear operator from A(Q)
into Al(Q)

< We define Ly(z) := L(z, k) /(L' (M) (2 = Ar)), k € N. By using upper bounds for L],
3.1(iii) and 3.3 (b), we obtain, that Ly is entire function on C and (Vn) (3In') (Vs) (3s')
(3C1,Co) such that for all z ¢ U(Mg, (1 + [Mx])72)

|Li(2)] < Crexp (Hy(2) + Hx(\k) + Ho(M) — Ho(Me) + |2]/s — [Mil/(s" = 1)
+2log(1 + [Ag|) — log|L'(A)|) < Caexp (Hp(2) — Ho( M) + |2]/s — [\l /s')  (Vk € N).

Applying the maximum principle we get that (Vn) (3n’) (Vs) (3s') (3C3) with
|Li(2)| < Csexp (Hu(2) — Hp( M) + |2]/s — |\l /s")  (Vz€C, keN).

From this it follows that the series ), cxLy, converges absolutely in Ag for each ¢ =

(ck)ken € Koo(@) and £ : ¢ +— > o cx Ly is continuous linear operator from K (Q) into Ag.
We shall find its adjoint operator ' : A(Q) — A1(Q):

(e, (en)) = (6(e) ) = (D ennsen)

keN

= eli(i) =) Qi (Mo Aksen) /L' (M) (Yp e C, ce Ai(Q)).
keN keN

Hence £'(eu) = (7 (Mg, Ak, eﬂ)/L,()‘k))keN’ p € C. Let CN be a space of all number sequence
with its natural topologie. The maps ' : A(Q) — CN and II : A(Q) — CY are continuous
and linear. Since the set {e, : p € C} is total in A(Q), we have II = k' on A(Q) and II is

continuous and linear from A(Q) into A1(Q). >
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Theorem 3.5. (I) Let 0 € int, K. The following assertions are equivalent:

(i) The representation operator R : A1(Q) — A(Q) has a continuous linear right inverse.

(ii) There is an entire function L on C? such that L(z,z) = L(z) and (¥Vn) (3n’) (¥s)
(3s) (3C) with

L(2, )| < Cexp (Hu(2) + Hic () + Ho(n) — Ha() + |21/5 — nl/s') (V2 € ©).

(iii) Q is strictly convex at O,w, the interior of K is not empty, Cg and 1/CY. are bounded
on some neighborhood of Sy, 1/082 and C§ are bounded on each compact subset of S,,.
(I1) (iv) If L is a function as in (ii), the operator

IL(f) = (7 (M, Ay )/ L (AR ren, [ € A(Q),

is a continuous linear right inverse for R.
(v) If IT: A(Q) — A1(Q) is a continuous linear right inverse for R, then there is a unique
function L as in (ii) such that II(f) = (Q; (Ak, Ak, £)/L' (M) ken, f € A(Q).

< (iv) (and (ii) = (i)): Let L be a function as in (ii). Then

maps continuously (and linearly) K (Q) into Ag. Since for each f € Ag the function f L(z,-)
belongs to Aintg+ Kk, taking into account the Lagrange interpolation formula (1), we obtain:

L(z, \x) L(z)
%f M) TR — W) %f ML) TS

=L(z2)f(z) = L(z)f(z) (VzeC, feAp).

This implies that x = II’ is a left inverse for R’. By the proof of Lemma 3.4 x is the adjoint
to II for each function L as in (ii). Hence IT is a right inverse for R.

(¢) = (i1): Let II be a continuous linear right inverse for R. Then x:=II" : Ko (A) — Aq is
a left inverse for R’. We put fj := r(e)), where ey := (Ok,n)nen, k € N. By Grothendieck’s
factorization theorem, for each n there is n’ such that x maps continuously proj.,, Ky, m(Q)
in proj_,, A, m. Hence the following holds: (Vn) (3n') (Vs) (37) (3C) with

[fu(2)| < Cexp (Hw(2) = Ho(Awy) + |2]/s = [A@w)l/r) (V2 €C, keN). (4)
For f € Ag let

L(p)
B—= Ak

T.(f)(u) == (z = Ae) fu(2) f (M), neC.

keN

By 2.2 (b) (ii) and (4) the series converges absolutely in Ag and converges uniformly (by 1)
on compact sets of C. Fix z € C. Then T, (uf)(p)) = pT.(f)(p) for all f € Ag and p € C.
By [12, Lemma 1.7] there is a function a, € A(C) such that T.(f)(x) = a.(p)f(p) for all
p€C, f e Ag. The function L(z,p) := a,(u), 2,4 € C, satisfies the conditions in (ii) (see
the proof of (i) = (ii) in [12, Theorem 1.8] too).

(iii) = (i) holds by Theorem 2.7.
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(i) = (iii): Since the operator R has a continuous linear righ inverse, R : A1(Q) — A(Q)
is surjectiv. By [13, Theorem 8| the set @ is strictly convex at 0,w.

Since (i) is equivalent to (i) there is a function L which satisfies the conditions in (ii).
Let P be the (radial) indicator of L, i. e.

log|L(tz, tp)|\*
P(Z)M) = <]imiup M) ) Z,/,LE(C.
—+00

Then P is a plurisubharmonic function on C? satisfying the conditions in (II) of Theorem 2.3.
Hence, by Theorem 2.3, there are subharmonic functions v; (t € S) as in (III) (b). We put
gi(p) = [tlveyp (u/It]), p,t € C, t # 0. Then g; are subharmonic functions on C such that
gt(t) = 0and (Vn) (In') (Vs) (3¢') with

9e(n) < Hi (p) + Ho(p) — Hu(p) — Hic(t) — Ho(t) + Hy (t) — [p|/s" + [t /s

for all u,t € C, t # 0. If S,, = @, the set @ is open. Hence the following holds: (Vn) (In’)
with

gu(11) < Hic () — Hic(8) + |ul/s' — [tl/s (Yt € C, ¢ £0).
Then, by [12, Proposition 1.17], an angle with the corner at 0 doesn’t exist in which the
support function Hg of K is harmonic. Hence int K # &. If S,, # @, there is an open (with
respect to S) subset A of S such that H,, = Hg on A for large n. Let I'(A) := {ra : r > 0}.
Then for each s there is s’ with

90(1n) < Hic(n) — Hic()) + [tl/s — |nl/s' (Vpu,t € C, £ 0),

As in [12, Proposition 1.17] from the maximum principle for harmonic functions it follows
that the interior of K is not empty.

By Theorem 2.3 , Proposition 2.5 and Remark 2.6 €y’ and 1 /CY. are bounded on some
neighborhood of Sy, 1/ C% and C% are bounded on each compact subset of S,,.

(v): By the proof of (i) = (ii) there is an entire function L satisfying the conditions in
(ii) and such that IT'(eq,) = #(’\k_))\k) for each k € N. Hence II'(c) = >,y ck%
for each ¢ € Koo (Q) and II(f) = (27 (A, Ay ) /L' (Ak))ken for all f € A(Q) (see the proof of
Lemma 3.4). We shall show uniqueness of such function L. Let f/l, I~/2 be two such functions.
Then Li(z,A\x) = La(z, M) for all k € N, z € C. Since {\; : k € N} is the uniqueness set
for A (see 2.2 (b)) and Ly(z,-), La(2,-) € Amiqir, we get Li(2,-) = La(z,-) for each
z € C and, consequently, L; = Ly on C2.
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O PABJIOYKEHMU B PAJIbI SKCIIOHEHT ®YHKIINN, AHAJIUTUYECKIX
HA BBIITYKJIBIX JIOKAJIBHO 3AMKHYTBIX MHO?KECTBAX

Memnuxos C. H., Momm 3.

Ilycts () — orpaHwveHHOe, BBITYKJIOE, JIOKAJBHO 3aMKHYTOE IOJIMHOYXKECTBO cN ¢ HEILyCTOIl BHYTPEH-
HocThio. st N > 1 mosiydeHBI JIOCTATOYHBIE YCJIOBUSI TOTO, UTO OIEPATOP MNPEJICTABJICHUS PsIaMUi
SKCIIOHEHT (PYHKIUH, aHAJIUTHIECKUX Ha (), MMEEeT JIMHEHHBIM HeNpepbIBHBIA IpaBblil obparHbii. s

N = 1 noka3aHbl KPUTEPHUH CYIIECTBOBAHUS JINHEHHOIO HEIIPEPBIBHOIO IIPABOIO OOPATHOIO K OIIEpaTOpy
peJiCTaB/IeHNs.

KiroueBblie cJioBa: JIOKAJIBHO 3aMKHYTOE MHOYKECTBO, aHAJUTHYECKHE (DYHKINU, Ps/Ibl SKCIIOHEHT, JIH-
HEHHBII HEIPEPBIBHBINA IIPABLIil 0OPATHBIIA.



