УДК 517.9

ON THE EXPANSIONS OF ANALYTIC FUNCTIONS ON CONVEX LOCALLY CLOSED SETS IN EXPONENTIAL SERIES

S. N. Melikhov, S. Momm

In memory of G. P. Akilov

Abstract

Let Q be a bounded, convex, locally closed subset of \mathbb{C}^{N} with nonempty interior. For $N>1$ sufficient conditions are obtained that an operator of the representation of analytic functions on Q by exponential series has a continuous linear right inverse. For $N=1$ the criterions for the existence of a continuous linear right inverse for the representation operator are proved.

Mathematics Subject Classification (2000): Primary 30B50; Secondary 32U35, 32A15, 47B37..
Key words: locally closed set, analytic functions, exponential series, continuous linear right inverse.

Introduction

In the late sixties Leont'ev (see [10]) proved that each analytic function f on a convex bounded domain $Q \subset \mathbb{C}$ can be expanded in an exponential series $\sum_{j \in \mathbb{N}} c_{j} \exp \left(\lambda_{j} \cdot\right)$. This series converges absolutely to f in the Fréchet space $A(Q)$ of all functions analytic on Q, and its exponents λ_{j} are zeroes of an entire function on \mathbb{C} which does not depend on $f \in A(Q)$. A formula for the coefficients of a some expansion in such exponential series (with the help of a system orthogonal to $\left.\left(\exp \left(\lambda_{j} \cdot\right)\right)_{j \in \mathbb{N}}\right)$ was obtained only for the analytic functions on the closure of Q. Later similar results for the analytic functions on convex bounded domain $Q \subset \mathbb{C}^{N}$ were obtained by Leont'ev [9], Korobeinik, Le Khai Khoi [3] (if Q is a polydomain) and Sekerin [15] (if Q is a domain of which the support function is a logarithmic potential).

In $[4,5,11]$ was investigated a problem of the determination of the coefficients of the expansions of all $f \in A(Q)$, where Q is a convex bounded domain in \mathbb{C}, in following setting. Let $K \subset \mathbb{C}$ be a convex set and suppose that L is an entire function on \mathbb{C} with zero set $\left(\lambda_{j}\right)_{j \in \mathbb{N}}$ and with the indicator $H_{Q}+H_{K}$, where H_{Q} and H_{K} is the support function of Q resp. of K. By $\Lambda_{1}(Q)$ we denote a Fréchet space of all number sequence $\left(c_{j}\right)_{j \in \mathbb{N}}$ such that the series $\sum_{j \in \mathbb{N}} c_{j} \exp \left(\lambda_{j} \cdot\right)$ converges absolutely in $A(Q)$. In $[4,5,11]$ were established the necessary and sufficient conditions under which a sequence of the coefficients $\left(c_{j}\right)_{j \in \mathbb{N}} \in \Lambda_{1}(Q)$ in a representation $f=\sum_{j \in \mathbb{N}} c_{j} \exp \left(\lambda_{j} \cdot\right)$ can be selected in such way that they depend continuously and linearly on $f \in A(Q)$. In other words, in $[4,5,11]$ was solved the problem of the existence of continuous linear right inverse for the representation operator $R: \Lambda_{1}(Q) \rightarrow$ $A(Q), c \mapsto \sum_{j \in \mathbb{N}} c_{j} \exp \left(\lambda_{j} \cdot\right)$. Note that in $[4,5]$ a formula for continuous linear right inverse for R (if it exists) was not obtained.

[^0]In the present article we consider the following situation. Let $Q \subset \mathbb{C}^{N}$ be a bounded convex set with nonempty interior. We assume that Q is locally closed, i. e. Q has a fundamental sequence of compact convex subsets $Q_{n}, n \in \mathbb{N}$. By $A(Q)$ we denote the space of all analytic functions on Q with the topologie of $\operatorname{proj}_{\leftarrow n} A\left(Q_{n}\right)$, where $A\left(Q_{n}\right)$ is endowed with natural (LF)-topologie. We put $e_{\lambda}(z):=\exp \left(\sum_{m=1}^{N} \lambda_{m} z_{m}\right), \lambda, z \in \mathbb{C}^{N}$. For an infinite set $M \subset \mathbb{N}^{N}$, for a sequence $\left(\lambda_{(k)}\right)_{(k) \in M} \subset \mathbb{C}^{\mathbb{N}^{N}}$ with $\left|\lambda_{(k)}\right| \rightarrow \infty$ as $|(k)| \rightarrow \infty$ we define a locally convex space $\Lambda_{1}(Q)$ of all number sequence $\left(c_{(k)}\right)_{(k) \in M}$ such that the series $\sum_{(k) \in M} c_{(k)} e_{\lambda_{(k)}}$ converges absolutely in $A(Q)$. The representation operator $c \mapsto \sum_{(k) \in M} c_{(k)} e_{\lambda_{(k)}}$ maps continuously and linearly $\Lambda_{1}(Q)$ into $A(Q)$. We solve the problem of the existence of a continuous linear right inverse for R.

In this paper for $N \geqslant 1$ we assume that $\left(\lambda_{(k)}\right)_{(k) \in M}$ is a subset of zero set of an entire function L on \mathbb{C}^{N} with "planar zeroes" and with indicator $H_{Q}+H_{K}$, where H_{Q} and H_{K} are the support functions of Q resp. of some convex compact set $K \subset \mathbb{C}^{N}$. By [15] such function L exists if and only if the support function of $\operatorname{cl} Q+K$ is so-called logarithmic potential (for $N=1$ a function L exists for each Q and each K). In contrast to [4, 5] here we do not use the structure theory of locally convex spaces. As in [11], we reduce the problem of existence a continuous linear right inverse for the representation operator to one of an extension of input function L to an entire function \tilde{L} on $\mathbb{C}^{2 N}$ satisfying some upper bounds. With the help of \tilde{L} we construct a continuous linear left inverse for the transposed map to R. Using $\bar{\partial}$-technique, we obtain that the existence of such extension \tilde{L} is equivalent to two conditions, namely, to the existence of two families of plurisubharmonic functions, first of which is associated only with Q and second is associated with K and Q. The evaluation of first condition was realized in [21]. For the evaluation of second condition we adapt as in [21] the theory of the boundary behavior of the pluricomplex Green functions of a convex domain and of a convex compact set in \mathbb{C}^{N} which was developed in $[23,25]$.

For $N=1$ we obtain more complete results. In the first place we prove the criterions for the existence of a continuous linear right inverse for R without additional suppositions on Q and K. Secondly, with the help of a function \tilde{L} as above we give a formula for a continuous linear right inverse for R.

1. Preliminaries

1.1. Notations. If $B \subset \mathbb{C}^{N}$, by $\mathrm{cl} B$ and int B we will denote the closure and the interior of B, respectively. By $\operatorname{int}_{r} B, \partial_{r} B$ we denote the relative interior and the relative boundary of B with respect to a certain larger set. For notations from convex analysis, we refer to Schneider [26].
1.2. Definitions and Remarks. A convex set $Q \subset \mathbb{C}^{N}$ admitting a countable fundamental system $\left(Q_{n}\right)_{n \in \mathbb{N}}$ of compact subsets of Q is called locally closed. Let $Q \subset \mathbb{C}^{N}$ be a locally closed convex set. We will write $\omega:=Q \cap \partial_{r} Q$, where $\partial_{r} Q$ denotes the relative boundary of Q in its affine hull. By [21, Lemma 1.2] ω is open in $\partial_{r} Q$. We may assume that the sets Q_{n} are convex and that $Q_{n} \subset Q_{n+1}$ for all $n \in \mathbb{N}$. A convex set $Q \subset \mathbb{C}^{N}$ will be called strictly convex at $\partial_{r} \omega$ if the intersection of Q with each supporting hyperplane to $\operatorname{cl} Q \subset \mathbb{C}^{N}$ is compact. If int $Q \neq \varnothing, Q$ is strictly convex at $\partial_{r} \omega$ if and only if each line segment of ω is relatively compact in ω.

By [13, Lemma 3] $Q \subset \mathbb{C}^{N}$ is strictly convex at $\partial_{r} \omega$ if and only if Q has a fundamental system of convex neigborhoods.
1.3. Convention. For the sequel, we fix a bounded, convex and locally closed set $Q \subset \mathbb{C}^{N}$ with 0 in its nonempty interior and with a fundamental system of compact convex
subsets $Q_{n} \subset Q_{n+1}, n \in \mathbb{N}$. By $\left(\omega_{n}\right)_{n \in \mathbb{N}}$ we shall denote some fundamental system of compact subsets of $\omega=Q \cap \partial_{r} Q$.
K will always denote a compact convex set in \mathbb{C}^{N}.
1.4. Notations. For each convex set $D \subset \mathbb{C}^{N}$ we denote by H_{D} the support function of D, i. e. $H_{D}(z):=\sup _{w \in D} \operatorname{Re}\langle z, w\rangle, z \in \mathbb{C}^{N}$. Here $\langle z, w\rangle:=\sum_{j=1}^{N} z_{j} w_{j}$. We put $H_{n}:=H_{Q_{n}}$, $n \in \mathbb{N}$.

Let $e_{\lambda}(z):=\exp \langle\lambda, z\rangle, \lambda, z \in \mathbb{C}^{N}$. For a locally convex space E by E_{b}^{\prime} we denote the strong dual space of E.
1.5. Function spaces. We set $|z|:=\langle z, \bar{z}\rangle^{1 / 2}, z \in \mathbb{C}^{N} ; U(t, R):=\left\{z \in \mathbb{C}^{N}:|t-z|<R\right\}$, $t \in \mathbb{C}^{N}, R>0 ; U:=U(0,1)$. For all $n, m \in \mathbb{N}$ let $E_{n, m}:=A^{\infty}\left(Q_{n}+\frac{1}{m} U\right)$ denote the Banach space of all bounded holomorphic functions on $Q_{n}+\frac{1}{m} U$, equipped with the sup-norm. We consider the spaces $A\left(Q_{n}\right)=\bigcup_{m \in \mathbb{N}} E_{n, m}$ of all functions holomorphic in some neighborhood of $Q_{n}, n \in \mathbb{N}$, and endow them with there natural inductive limit topology. By $A(Q)$ we denote the vector space of all functions which are holomorphic on some neighborhood of Q. We have $A(Q)=\bigcap_{n \in \mathbb{N}} A\left(Q_{n}\right)$, and we endow this vector space with the topology of $A(Q):=\operatorname{proj}_{\leftarrow n} A\left(Q_{n}\right)$. This topology does not depend on the choice of the fundamental system of compact sets $\left(Q_{n}\right)_{n \in \mathbb{N}}$. If Q is open, $A(Q)$ is a Fréchet space of all holomorphic functions on Q.

For all $n, m \in \mathbb{N}$ let

$$
A_{n, m}:=\left\{f \in A\left(\mathbb{C}^{N}\right):\|f\|_{n, m}:=\sup _{z \in \mathbb{C}^{N}}|f(z)| \exp \left(-H_{n}(z)-|z| / m\right)<\infty\right\}
$$

and

$$
A_{Q}:=\operatorname{ind}_{n \rightarrow} \operatorname{proj} A_{n, m}
$$

1.6. Duality. The $(L F)$-space $A(Q):=\operatorname{ind}_{n \rightarrow A} A\left(Q_{n}\right)_{b}^{\prime}$ and A_{Q} are isomorphic by the Laplace transformation

$$
\mathscr{F}: A(Q)^{\prime} \rightarrow A_{Q}, \quad \mathscr{F}(\varphi)(z):=\varphi\left(e_{z}\right), \quad z \in \mathbb{C}^{N}
$$

In addition $(L F)$-topology of $A(Q)^{\prime}$ equals the strong topology.
The assertion has been proved in [21, Lemma 1.10] (see Remark after 1.10, too)
If we identify the dual space of $A(Q)$ with A_{Q} by means of the bilinear form $\langle\cdot, \cdot\rangle$, then $\left\langle e_{\lambda}, f\right\rangle=f(\lambda)$ for all $\lambda \in \mathbb{C}^{N}$ and all $f \in A_{Q}$.
1.7. Sequence spaces. Representation operator. Let $M \subset \mathbb{N}^{N}$ be an infinite set and $\left(\lambda_{(k)}\right)_{(k) \in M} \subset \mathbb{C}^{N}$ be a sequence with $\left|\lambda_{(k)}\right| \rightarrow \infty$ as $|(k)| \rightarrow \infty$. For all $n, m \in \mathbb{N}$ we introduce the Banach spaces

$$
\begin{aligned}
\Lambda_{n, m}(Q) & :=\left\{c=\left(c_{(k)}\right)_{(k) \in M} \subset \mathbb{C}: \sum_{(k) \in M}\left|c_{(k)}\right| \exp \left(H_{n}\left(\lambda_{(k)}\right)+\left|\lambda_{(k)}\right| / m\right)<\infty\right\} \\
K_{n, m}(Q) & :=\left\{c=\left(c_{(k)}\right)_{(k) \in M} \subset \mathbb{C}: \sup _{(k) \in M}\left|c_{(k)}\right| \exp \left(-H_{n}\left(\lambda_{(k)}\right)-\left|\lambda_{(k)}\right| / m\right)<\infty\right\}
\end{aligned}
$$

and put

$$
\Lambda_{1}\left(Q_{n}\right):=\operatorname{ind}_{m \rightarrow} \Lambda_{n, m}(Q), \quad \Lambda_{1}(Q):=\underset{\leftarrow n}{\operatorname{proj}} \Lambda_{1}\left(Q_{n}\right), \quad K_{\infty}(Q):=\underset{n \rightarrow \underset{\leftarrow m}{\operatorname{ind}} \operatorname{proj}}{ } K_{n, m}(Q)
$$

We note that the series $\sum_{(k) \in M} c_{(k)} e_{\lambda_{(k)}}$ converges absolutely in $A(Q)$ if and only if $c \in \Lambda_{1}(Q)$ (see [2, Ch. I, §§ 1, 9]).

The operator $R(c):=\sum_{(k) \in M} c_{(k)} e_{\lambda_{(k)}}$ maps continuously and linearly $\Lambda_{1}(Q)$ in $A(Q)$. We call R the representation operator. By Korobeinik [2], if $R: \Lambda_{1}(Q) \rightarrow A(Q)$ is surjectiv, $\left(e_{\lambda_{(k)}}\right)_{(k) \in M}$ is called an absolutely representing system in $A(Q)$.

Let $e_{(k)}:=\left(\delta_{(k),(m)}\right)_{(m) \in M},(k) \in M$, where $\delta_{(k),(m)}$ is the Kronecker delta.
1.8. Duality. (i) The transformation $\varphi \mapsto\left(\varphi\left(e_{(k)}\right)\right)_{(k) \in M}$ is an isomorphism of (LF)space $\Lambda_{1}(Q)^{\prime}:=\operatorname{ind}_{n \rightarrow \Lambda_{1}}\left(Q_{n}\right)_{b}^{\prime}$ onto $K_{\infty}(Q)$. The duality between $\Lambda_{1}(Q)$ and $K_{\infty}(Q)$ is defined by the bilinear form $\langle c, d\rangle:=\sum_{(k) \in M} c_{(k)} d_{(k)}$.
(ii) A transposed map $R^{\prime}: A_{Q} \rightarrow K_{\infty}(Q)$ to $R: \Lambda_{1}(Q) \rightarrow A(Q)$ is the restriction operator $f \mapsto\left(f\left(\lambda_{(k)}\right)\right)_{(k) \in M}$.
(iii) R has a continuous linear right inverse if and only if R^{\prime} has a continuous linear left inverse.
\triangleleft The assertions (i) and (ii) were in [13, Lemma 6] proved.
(iii): This can be proved in the same way as $(i) \Rightarrow(i i)$ in [21, Lemma 1.12]. (We note that we can not assume in advance the surjectivity of R.) \triangleright
1.9. Notations. Let $S:=\left\{z \in \mathbb{C}^{N}:|z|=1\right\}$. For a convex set $D \subset \mathbb{C}^{N}, \gamma \subset D$ and $A \subset S$ we define

$$
S_{\gamma}(D):=\left\{a \in S: \operatorname{Re}\langle w, a\rangle=H_{D}(a) \text { for some } w \in \gamma\right\}
$$

and

$$
F_{A}(D):=\left\{w \in D: \operatorname{Re}\langle w, a\rangle=H_{D}(a) \text { for some } a \in A\right\} .
$$

We will write $S_{\gamma}:=S_{\gamma}(Q), \hat{A}:=S_{F_{A}(K)}(K), S_{0}:=S \backslash S_{\omega}$.
Definition 1.10. (a) Given an open subset $B \subset S$ and a compact convex set $K \subset \mathbb{C}^{N}$. K is called smooth in the directions of the boundary of B if for each compact set $\kappa \subset B$ the compact set $\hat{\kappa}:=S_{F_{\kappa}(K)}(K)$ is still contained in B.

Note that the condition is fulfilled if ∂K is of class C^{1}.
(b) A convex compact set $K \subset \mathbb{C}^{N}$ is called not degenerate in the directions of $B \subset S$, if K is not contained all in the supporting hyperplane $\left\{z \in \mathbb{C}^{N} \operatorname{Re}\langle z, a\rangle=H_{K}(a)\right\}$ of K for each $a \in B$.

Note that the condition is fulfilled if int $K \neq \varnothing$.
Remark 1.11. (a) Under the hypotheses of the Definition 1.10 (a) the following holds: Let $S_{1} \subset S$ be an open neighborhood of $S \backslash B$ (with respect to S). For $\kappa:=S \backslash S_{1}$, the set $\hat{\kappa}$ is a compact subset of B. Hence if $S_{2} \subset S \backslash \hat{\kappa}$ is compact, we have $\hat{S}_{2} \cap \kappa=\varnothing$ and thus $\hat{S}_{2} \subset S_{1}$. (Otherwise it would follow that $\hat{\kappa} \cap S_{2} \neq \varnothing$.)
(b) Let K have 0 as an interior point. K is smooth in the directions of the boundary of B if and only if the convex set $\operatorname{int} K^{0} \cup \omega^{\prime}$ is strictly convex at $\partial_{r} \omega^{\prime}$, where $\omega^{\prime}:=\partial K^{0} \cap \Gamma(B)$, $K^{0}:=\left\{z \in \mathbb{C}^{N} \mid H_{K}(z) \leqslant 1\right\}$ and $\Gamma(B):=\{t b \mid t>0\}$.

2. Conditions of existence of a continuous linear right inverse for the representation operator

2.1. Notations, Definitions and Remarks. (a) Let f be an entire functions of exponential type on \mathbb{C}^{N}. By h_{f}^{*} we denote the (radial) indicator of f, i. e.

$$
h_{f}^{*}(z):=\limsup _{z^{\prime} \rightarrow z}\left(\limsup _{r \rightarrow+\infty} \log \left|f\left(r z^{\prime}\right)\right| / r\right) \text { for all } z \in \mathbb{C}^{N} .
$$

(b) An entire function f of exponential type on \mathbb{C} is called function of completelly regular growth (by Levin-Pflüger), if there is a set of circles $U\left(\mu_{j}, r_{j}\right), j \in \mathbb{N}$, with $\left|\mu_{j}\right| \rightarrow \infty$ as $j \rightarrow \infty$, such that $\lim _{R \rightarrow \infty} \frac{1}{R} \sum_{\left|\mu_{j}\right|<R} r_{j}=0$ and outside of $\cup_{j \in \mathbb{N}} U\left(\mu_{j}, r_{j}\right)$ the following asymptotic equality holds:

$$
\log |f(z)|=h_{f}^{*}(z)+\bar{o}(|z|) \text { as }|z| \rightarrow \infty .
$$

By Krasichkov-Ternovskii [6], in Definition (b) we can choose the exclusive circles $U\left(\mu_{j}, r_{j}\right)$ so that they are mutually disjoint.
(c) By Gruman [18] an entire function f of exponential type on \mathbb{C}^{N} is called function of completelly regular growth, if for almost all $a \in S$ the function $f(a z)$ of one complex variable has completelly regular growth on \mathbb{C}.
(d) There are other definitions of the functions of completelly regular growth of Azarin [1] and of Lelon, Gruman [8, Ch.IV, 4.1]. By Papush [14], if f is an entire function on \mathbb{C}^{N} with "planar" zeroes, i. e. the zero set $\left\{z \in \mathbb{C}^{N}: f(z)=0\right\}$ of f is the union of the hyperplanes $\left\{z \in \mathbb{C}^{N}:\left\langle z, a_{k}\right\rangle=c_{k}\right\}, a_{k} \in S, c_{k} \in \mathbb{C}, k \in \mathbb{N}$, all these definitions (for f) are equivalent. From this and from $[7,22]$ it follows that an entire function f on \mathbb{C}^{N} with "planar" zeroes has completely regular growth on \mathbb{C}^{N} if and only if f is slowly decreasing on \mathbb{C}^{N}.

We recall the some definitions and results from Sekerin [15].
2.2. A special entire function. A structure of the exponents $\lambda_{(k)}$. (a) Below we shall exploit an entire function L on \mathbb{C}^{N} of order 1 , which satisfies the following conditions: (i) The zero set $V(L)$ of L is a sequence of pairwise distinct hyperplanes $P_{k}:=\left\{z \in \mathbb{C}^{N}\right.$: $\left.\left\langle a_{k}, z\right\rangle=c_{k}\right\}, k \in \mathbb{N}$, where $\left|a_{k}\right|=1$ and $c_{k} \neq 0$. If for $k_{1}<k_{2}<\ldots<k_{N}$ the intersection $P_{k_{1}} \cap P_{k_{2}} \cap \ldots \cap P_{k_{N}}$ is not empty, then it consits of a single point $\lambda_{(k)}$, where (k) denotes multiindex $\left(k_{1}, k_{2}, \ldots, k_{N}\right)$. Further M is the set of the such multiindexes (k). Moreover, $L_{(k)}\left(\lambda_{(k)}\right) \neq 0$, where $L_{(k)}(z):=L(z) / l_{(k)}(z)$ and $l_{(k)}(z):=\prod_{j=1}^{N}\left(\left\langle a_{k_{j}}, z\right\rangle-c_{k_{j}}\right),(k) \in M$.
(ii) L is a function of completely regular growth with indicator $H_{Q}+H_{K}$.
(iii) $\left|L_{(k)}\left(\lambda_{(k)}\right)\right|=\exp \left(H_{Q}\left(\lambda_{(k)}\right)+H_{K}\left(\lambda_{(k)}\right)+\bar{o}\left(\left|\lambda_{k}\right|\right)\right)$ as $|(k)| \rightarrow \infty$.

We write $l_{k}(z):=\left\langle a_{k}, z\right\rangle-c_{k}, z \in \mathbb{C}^{N}, k \in \mathbb{N}$.
(b) (i) By [15, Theorem 1], for each $f \in A_{\text {int } Q+K}$ the Lagrange interpolation formula holds:

$$
\begin{equation*}
f(\lambda)=\sum_{(k) \in M} \frac{L_{(k)}(\lambda)}{L_{(k)}\left(\lambda_{(k)}\right)} f\left(\lambda_{(k)}\right), \quad \lambda \in \mathbb{C}^{N}, \tag{1}
\end{equation*}
$$

where the series converges uniformly on compact sets of \mathbb{C}^{N}. From (1) it follows that $\left(\lambda_{(k)}\right)_{(k) \in M}$ is the uniqueness set for $A_{\text {int } Q+K}$, i. e. from $f \in A\left(\mathbb{C}^{N}\right), h_{f}^{*}(z)<H_{Q}(z)+H_{K}(z)$ for all $z \in \mathbb{C}^{N} \backslash\{0\}$ it follows that $f \equiv 0$.
(ii) There is a function $\alpha(z)=\bar{o}(|z|)$ as $|z| \rightarrow \infty$ such that $\left|L_{(k)}(z)\right| \leqslant \exp \left(H_{Q}(z)+\right.$ $\left.H_{K}(z)+\alpha(z)\right)$ for all $z \in \mathbb{C}^{N}$ and all $(k) \in M$.
(c) A plurisubharmonic function u on \mathbb{C}^{N} will be called a logarithmic potential if there exists a Borel measure $\mu \geqslant 0$ on $[0, \infty) \times S^{N}$ such that for every $R \in(0, \infty)$ there is a pluriharmonic function u_{R} on $U(0, R)$ with

$$
u(z)=\int_{[0, R] \times S^{N}} \log |t-\langle z, w\rangle| d \mu(t)+u_{R}(z) \text { for all } z \in U(0, R) .
$$

By [15] for a bounded convex domain D with $0 \in D$ the support function H_{D} is a logarithmic potential for example if D is a polydomain, a ball, an ellipsoid, a polyhedra with
symmetric faces, and in the case of \mathbb{C}^{2}, if $D=D_{1}+i D_{2}$, where D_{1} and D_{2} are any centrally symmetric convex domains in \mathbb{R}^{2}; if D is symmetric with respect to 0 and $\mathrm{cl} D$ is a Steiner compact set (see Matheron [19, §4.5]).

For each bounded convex domain $D \subset \mathbb{C}$ with $0 \in \operatorname{int} D$ the function H_{D} is a logarithmic potential.
(d) By [15, Theorem 5], there exists a function L satisfying the conditions (i)-(iii) in 2.2 (a) if and only if $H_{Q}+H_{K}$ is a logarithmic potential. $H_{Q}+H_{K}$ is a logarithmic potential if H_{Q} and H_{K} are the logarithmic potentials.
(e) Let $H_{Q+K}=H_{Q}+H_{K}$ be a logarithmic potential. By [15] the representation operator $R: \Lambda_{1}(\operatorname{int} Q+K) \rightarrow A(\operatorname{int} Q+K)$ is surjective. By [13, Theorem 14] $R: \Lambda_{1}(Q) \rightarrow A(Q)$ is surjective, if Q is strictly convex at $\partial_{r} \omega, K$ is smooth in the directions of $\partial_{r} S_{\omega}$ and not degenerate in the directions of S_{ω}.

Theorem 2.3. Let Q be strictly convex at $\partial_{r} \omega$ and L be an entire function on \mathbb{C}^{N} satisfying the conditions 2.2 (a). Then (II) \Leftrightarrow (III) \Rightarrow (I):
(I) The representation operator $R: \Lambda_{1}(A) \rightarrow A(Q)$ has a continuous linear right inverse.
(II) There is a positively homogeneous of order 1 plurisubharmonic function P on $\mathbb{C}^{2 N}$ such that $P(z, z) \geqslant H_{Q}(z)+H_{K}(z)$ and $(\forall n)\left(\exists n^{\prime}\right)(\forall s)\left(\exists s^{\prime}\right)$ with

$$
P(z, \mu) \leqslant H_{n^{\prime}}(z)+|z| / s+H_{K}(\mu)+H_{Q}(\mu)-H_{n}(\mu)-|\mu| / s^{\prime} \quad\left(\forall z, \mu \in \mathbb{C}^{N}\right)
$$

(III) There are the plurisubharmonic functions $u_{t}, v_{t}, t \in S$, on \mathbb{C}^{N} such that $u_{t}(t) \geqslant 0$, $v_{t}(t) \geqslant 0$ and $(\forall n)\left(\exists n^{\prime}\right)(\forall s)\left(\exists s^{\prime}\right)$ with
(a) $u_{t}(z) \leqslant H_{n^{\prime}}(z)-H_{n}(t)+|z| / s-1 / s^{\prime}$ and
(b) $v_{t}(\mu) \leqslant H_{K}(\mu)+H_{Q}(\mu)-H_{n}(\mu)-H_{K}(t)-H_{Q}(t)+H_{n^{\prime}}(t)-|\mu| / s^{\prime}+1 / s$ for all $z, \mu \in \mathbb{C}^{N}$ and all $t \in S$.
$\triangleleft(\mathrm{II}) \Rightarrow$ (III). We may choose

$$
u_{t}(z):=P(z, t)-H_{Q}(t)-H_{K}(t), \quad v_{t}(\mu):=P(t, \mu)-H_{Q}(t)-H_{K}(t)
$$

for all $z, \mu \in \mathbb{C}^{N}$ and $t \in S$.
(III) \Rightarrow (II). We put

$$
P_{0}(z, \mu):=\left(\sup _{t \in S}\left(u_{t}(z)+v_{t}(\mu)+H_{Q}(z)+H_{K}(\mu)\right)\right)^{*}, \quad z, \mu \in \mathbb{C}^{N}
$$

where f^{*} denotes the regularization of a function $f . P_{0}$ is the plurisubharmonic function on $\mathbb{C}^{2 N}$ with

$$
P(z, z) \geqslant H_{Q}(z)+H_{K}(z) \quad(\forall z \in S)
$$

By (III) we have: $(\forall m)\left(\exists n^{\prime}\right)(\forall s)(\exists r)$ with

$$
u_{t}(z) \leqslant H_{n^{\prime}}(z)-H_{m}(t)+|z| / s-1 / r \text { for all } z \in \mathbb{C}^{N} \text { and all } t \in S
$$

and $(\forall n)(\exists m)(\forall r)\left(\exists s^{\prime}\right)$ with

$$
v_{t}(\mu)+H_{Q}(t)+H_{K}(t) \leqslant H_{K}(\mu)+H_{Q}(\mu)-H_{n}(\mu)+H_{m}(t)-|\mu| / s+1 / r
$$

for all $\mu \in \mathbb{C}^{N}$ and all $t \in S$. By adding the last inequalities, we obtain that $(\forall n)\left(\exists n^{\prime}\right)(\forall s)$ ($\exists s^{\prime}$) with

$$
u_{t}(z)+v_{t}(\mu)+H_{Q}(t)+H_{K}(t) \leqslant H_{n^{\prime}}(z)+H_{K}(\mu)+H_{Q}(\mu)-H_{n}(\mu)+|z| / s-|\mu| / s^{\prime}
$$

for all $z, \mu \in \mathbb{C}^{N}$ and $t \in S$. From this it follows that P_{0} satisfies the upper bounds in (II). As P we may choose $P(z, \mu):=\left(\limsup _{t \rightarrow+\infty} P(t z, t \mu) / t\right)^{*}, z, \mu \in \mathbb{C}^{N}$.
(III) \Rightarrow (I). By (the proof of) [16, Theorem 4.4.3] (see [8, Theorem 7.1], too) there is a $\tilde{L} \in A\left(\mathbb{C}^{2 N}\right)$ with $\tilde{L}(z, z)=L(z)$ and $(\forall n)\left(\exists n^{\prime}\right)(\forall s)\left(\exists s^{\prime}\right)(\exists C):\left(\forall z, \mu \in \mathbb{C}^{N}\right)$

$$
\begin{equation*}
|\tilde{L}(z, \mu)| \leqslant C \exp \left(H_{n^{\prime}}(z)+|z| / s+H_{K}(\mu)+H_{Q}(\mu)-H_{n}(\mu)-|\mu| / s^{\prime}\right) \tag{2}
\end{equation*}
$$

We define

$$
\begin{equation*}
\kappa_{1}(c)(z):=\sum_{(k) \in M} \frac{L_{(k)}(z) \tilde{L}\left(z, \lambda_{(k)}\right)}{L_{(k)}\left(\lambda_{(k)}\right)} c_{(k)}, \quad c \in K_{\infty}(Q), z \in \mathbb{C}^{N} \tag{3}
\end{equation*}
$$

From (2) it follows that the series in (3) converges absolutely in $A_{2 Q+K}$. (By [21, Remark 1.5] $2 Q+K$ is locally closed and $\left(2 Q_{n}+K\right)_{n \in \mathbb{N}}$ is a fundamental system of compact subsets of $2 Q+K$.) Hence $\kappa_{1} \operatorname{maps} K_{\infty}(Q)$ in $A_{2 Q+K}$ continuously (and linearly). Since, by (2), for all $f \in A_{Q}$ and $z \in \mathbb{C}^{N}$ the function $\tilde{L}(z, \cdot) f$ belongs to $A_{\text {int }} Q+K$, by $2.2(\mathrm{~b})$ for all $z \in \mathbb{C}^{N}$

$$
\kappa_{1}\left(R^{\prime}(f)\right)(z)=\sum_{(k) \in M} \frac{L_{(k)}(z) \tilde{L}\left(z, \lambda_{(k)}\right)}{L_{(k)}\left(\lambda_{(k)}\right)} f\left(\lambda_{(k)}\right)=\tilde{L}(z, z) f(z)=L(z) f(z)
$$

From here it follows that $\kappa_{1} \circ R^{\prime}$ is the operator of multiplication by L. By [21, Proposition 2.7] there is a continuous linear left inverse $\kappa_{2}: A_{2 Q+K} \rightarrow A_{Q}$ for $\kappa_{1} \circ R^{\prime}$. The operator $\kappa:=\kappa_{1} \circ \kappa_{2}$ is a continuous linear left inverse for R^{\prime}.

Now we shall evaluate the abstract condition (III) (b) of Theorem 2.3. The condition (III) (a) was evalueted in [21, Proposition 3.6]. \triangleright

We recall some definitions from [23] and [25].
Definition 2.4. If $D \subset \mathbb{C}^{N}$ is bounded, convex and $c>0$, let $v_{H_{D}, c}^{0}$ be the largest plurisubharmonic function on \mathbb{C}^{N} bounded by H_{D} and with $v_{H_{D}, c}^{0}(z) \leqslant c \log |z|+O(1)$ as $|z| \rightarrow 0$. A function $C_{H_{D}}^{0}: S \rightarrow[0, \infty]$ is defined by

$$
\left\{z \in \mathbb{C}^{N}: v_{H_{D}, c}^{0}(z)=H_{D}(z)\right\}=\left\{\lambda a: a \in S, 1 / C_{H_{D}}^{0}(a) \leqslant \lambda<\infty\right\}
$$

If $0 \in \operatorname{int} D$ and if $C>0$, let $v_{H_{D}, C}^{\infty}$ be the largest plurisubharmonic function on \mathbb{C}^{N} bounded by H_{D} and with $v_{H_{D}, C}^{\infty}(z) \leqslant C \log |z|+O(1)$ as $|z| \rightarrow \infty$. A function $C_{H_{0}}^{\infty}: S \rightarrow[0, \infty]$ is defined by

$$
\left\{z \in \mathbb{C}^{N}: v_{H_{D}, C}^{\infty}(z)=H_{D}(z)\right\}=\left\{\lambda a: a \in S, 0 \leqslant \lambda \leqslant 1 / C_{H_{D}}^{\infty}(a)\right\}
$$

Instead $C_{H_{D}}^{0}$ and $C_{H_{D}}^{\infty}$ we shall write briefly C_{D}^{0} resp. C_{D}^{∞}.
Proposition 2.5. Let Q be strictly convex at the $\partial_{r} \omega$ and suppose that $0 \in \operatorname{int} K$. For $N>1$ assume that K is smooth in the directions of $\partial_{r} S_{\omega}$. The following are equivalent:
(i) There are plurisubharmonic functions $v_{t}(t \in S)$ on \mathbb{C}^{N} with $v_{t}(t) \geqslant 0$ such that: $(\forall n)$ $\left(\exists n^{\prime}\right)(\forall s)\left(\exists s^{\prime}\right)$ with

$$
v_{t} \leqslant H_{K}+H_{Q}-H_{n}-|\cdot| / s^{\prime}-H_{K}(t)-H_{Q}(t)+H_{n^{\prime}}(t)+1 / s \quad(\forall t \in S)
$$

(ii) $1 / C_{K}^{0}$ is bounded on some neighborhood of S_{0} and C_{K}^{∞} is bounded on each compact subset of S_{ω}.
$\triangleleft(\mathrm{i}) \Rightarrow$ (ii). Choose n^{\prime} according to (i) for $n=1$. On S_{o} we have $H_{n^{\prime}}<H_{Q}$. Thus there are a neigborhood \tilde{S} of S_{o} and some $\varepsilon>0$ with $H_{n^{\prime}}+\varepsilon \leqslant H_{Q}$ on \tilde{S}. We put

$$
v:=\left(\sup _{t \in \tilde{S}}\left(v_{t}+H_{K}(t)\right)\right)^{*}
$$

This function is plurisubharmonic on \mathbb{C}^{N} with $v \geqslant H_{K}$ on \tilde{S} and satisfies: $(\forall n)\left(\exists n^{\prime}\right)(\forall s)$ $\left(\exists s^{\prime}\right)$ such that

$$
v \leqslant H_{K}+|\cdot| / n+\max _{t \in \tilde{S}}\left\{-H_{Q}(t)+H_{n^{\prime}}\right\}+1 / s
$$

Since $H_{n^{\prime}} \leqslant H_{Q}$, this gives $v \leqslant H_{K}$ on \mathbb{C}^{N}. The bounds for $n=1$ give $v(0) \leqslant-\varepsilon$.
From $[25,2.14]$ it follows that $1 / C_{K}^{0}$ is bounded on \tilde{S}.
Let $\kappa \subset S_{\omega}$. We define

$$
v:=\left(\sup _{t \in \kappa}\left(v_{t}+H_{K}(t)\right)\right)^{*}
$$

This function is plurisubharmonic on \mathbb{C}^{N} with $v \geqslant H_{K}$ on κ and satisfies: $(\forall n)\left(\exists n^{\prime}\right)(\forall s)$ $\left(\exists s^{\prime}\right)$ such that $v \leqslant H_{K}+H_{Q}-H_{n}-|\cdot| / s^{\prime}+1 / s \leqslant H_{K}+H_{Q}-H_{n}+1 / s$. This shows that $v \leqslant H_{K}$.

Now choose n with $\kappa \subset S_{\omega_{n}}$, i. e. with $H_{Q}=H_{n}$ on $\hat{\kappa}$. Choose $n^{\prime} \geqslant n$ according to (i). Choose s^{\prime} for $s=1$. Then there is a neighborhood $\tilde{\kappa}$ of κ in S such that

$$
H_{Q}-H_{n}-|\cdot| / s^{\prime} \leqslant-|\cdot| /\left(2 s^{\prime}\right) \text { on } \Gamma(\tilde{\kappa})
$$

and thus

$$
v \leqslant H_{K}-|\cdot| /\left(2 s^{\prime}\right)+1 \text { on } \Gamma(\tilde{\kappa}) .
$$

In order to reach our claim that C_{K}^{∞} is bounded on κ, we need an estimate like the previous one on all \mathbb{C}^{N} (not only on the particular cone). For this purpose we are going to modify v. First note that, if $N=1$, it follows from what we have already proved that ∂K has to be of class C^{1} (see $\left.[20,2.10,2.14]\right)$. For $N>1$ we use our special hypothesis. For this reason we may assume that we have constructed v for the set $\hat{\kappa}$ instead of κ.

Define

$$
L(z):=\sup _{w \in F_{\kappa}} \operatorname{Re}\langle w, z\rangle, \quad z \in \mathbb{C}^{N}
$$

The positively homogeneous function L satisfies $L \leqslant H_{K}$ on \mathbb{C}^{N}, and $L=H_{K}$ on κ. If $L(a)=H_{K}(a)$, there is $w \in F_{\kappa}$ with $\operatorname{Re}\langle w, a\rangle=H_{K}(a)$, hence $a \in S_{F_{\kappa}}$. Thus $L<H$ on S outside the compact set $\hat{\kappa}$. We replace v by $\tilde{v}:=v / 2+L / 2$ and obtain $\tilde{v} \leqslant H_{K}$ on \mathbb{C}^{N}, $\tilde{v}=H_{K}$ on κ and $\tilde{v}<H_{K}$ outside a neighborhood of the origin. By [23,2.1] this shows that C_{K}^{∞} is bounded on κ.
(ii) \Rightarrow (i). By the hypothesis, $1 / C_{K}^{0}$ is bounded on some neighborhood \tilde{S} of S_{0}. Hence there is $c>0$ such that the plurisubharmonic function $v_{H_{K}, c}^{0}$ equals H_{K} on \tilde{S}. Let $n \in \mathbb{N}$. Since $H_{n}<H_{Q}$ on S_{0}, there is a compact neighborhood S_{n} of S_{0} with $H_{n}<H_{Q}$ on S_{n}. We may assume $S_{n} \subset S_{n-1} \subset \ldots \subset S_{1} \subset \tilde{S}$. Since C_{K}^{∞} is bounded on $S \backslash S_{n}$, there is $C_{n}>0$ with $v_{n}^{\infty}:=v_{H_{K}, C_{n}}^{\infty}=H_{K}$ on $S \backslash S_{n+2}$.

Again for $N=1$ it follows from (ii) that ∂K is of class C^{1}. For $N>1$ we apply the extra hypothesis to obtain (as in the first part of the proof) a positively homogeneous function L_{n} bounded by H on \mathbb{C}^{N}, which equals H on $\kappa=S_{n+1}$, and such that $L_{n}<H$ outside the compact set $\hat{S}_{n+1} \subset S_{n}$ (see Remark 1.11 (a)). Then the plurisubharmonic function $v_{n}^{0}:=v_{H_{K}, c}^{0} / 2+L_{n} / 2$ satisfy $v_{n} \leqslant H_{K}$ on $\mathbb{C}^{N}, v_{n}=H_{K}$ on $S_{n+1}, v_{n} \leqslant\left(H_{K}+L_{n}\right) / 2<H_{K}$ on $S \backslash S_{n}$.

Fix $n \in \mathbb{N}$. Since $v_{n}^{0} \leqslant\left(H_{K}+L_{n}\right) / 2<H_{K}+H_{Q}-H_{n}$ on S, and since $v_{n}^{0}(0)<0$, there is \tilde{n} with

$$
v_{n}^{0} \leqslant H_{K}+H_{Q}-H_{n}-D / 2-1 / \tilde{n} \text { on } \mathbb{C}^{N}
$$

where

$$
D:=H_{K}+H_{Q}-H_{n}-\left(H_{K}+L_{n}\right) / 2=\left(H_{K}-L_{n}\right) / 2+H_{Q}-H_{n}
$$

Choose n^{\prime} with $H_{Q}-H_{n^{\prime}} \leqslant 1 / \tilde{n}$ on S_{n+1}. Then for each s there is s^{\prime} with $D / 2 \geqslant|\cdot| / s^{\prime}$ on \mathbb{C}^{N} such that

$$
v_{n}^{0} \leqslant H_{K}+H_{Q}-H_{n}-|\cdot| / s^{\prime}-H_{Q}(t)+H_{n^{\prime}}(t)+1 / s \quad\left(\forall t \in S_{n+1}\right)
$$

For the functions v_{n}^{∞} we get: Choose n^{\prime} (in addition) so large that $H_{Q}=H_{n^{\prime}}$ on $S \backslash S_{n+2}$. For each s we choose s^{\prime} (in addition) so large that $v_{n}^{\infty} \leqslant H_{K}-|\cdot| / s^{\prime}+1 / s$ (see Definition 2.4). This gives

$$
v_{n}^{\infty} \leqslant H_{K}+H_{Q}-H_{n}-|\cdot| / s^{\prime}-H_{Q}(t)+H_{n^{\prime}}(t)+1 / s \quad\left(\forall t \in S \backslash S_{n+2}\right)
$$

Note that $v_{1}^{0} \geqslant \ldots \geqslant v_{n}^{0} \geqslant v_{n+1}^{0}$ and that $v_{1}^{\infty} \leqslant \ldots \leqslant v_{n}^{\infty} \leqslant v_{n+1}^{\infty}$. That is why for each $l \in \mathbb{N}$ the following holds: $(\forall n)\left(\exists n^{\prime}\right)(\forall s)\left(\exists s^{\prime}\right)$ with

$$
v_{l}^{0} \leqslant H_{K}+H_{Q}-H_{n}-|\cdot| / s^{\prime}-H_{Q}(t)+H_{n^{\prime}}(t)+1 / s \quad\left(\forall t \in S_{n+1}\right)
$$

and $(\forall n)\left(\exists n^{\prime}\right)(\forall s)\left(\exists s^{\prime}\right)$ with

$$
v_{l}^{\infty} \leqslant H_{K}+H_{Q}-H_{n}-|\cdot| / s^{\prime}-H_{Q}(t)+H_{n^{\prime}}(t)+1 / s \quad\left(\forall t \in S \backslash S_{n+2}\right)
$$

By the construction, $\lim _{l \rightarrow \infty} v_{l}^{0}=: v_{\infty}^{0}$ exists and defines a plurisubharmonic function with $v_{\infty}^{0}=H_{K}$ on S_{0}.

For $t \in S \backslash S_{2}$ define $\tilde{v}_{t}:=v_{1}^{\infty}$. For $t \in S_{l+1} \backslash S_{l+2}$ we put $\tilde{v}_{t}:=v_{l}^{0} / 2+v_{l}^{\infty} / 2$. For $t \in S_{0}$ we define $\tilde{v}_{t}:=v_{\infty}^{0}$. Obviously $\tilde{v}_{t}(t)=H_{K}(t)$ for all $t \in S$.

Let $t \in S_{l+1} \backslash S_{l+2}$. For $n \leqslant l$ and n^{\prime}, s and s^{\prime} as above we get

$$
\tilde{v}_{t} \leqslant\left(H_{K}+H_{Q}-H_{n}-|\cdot| / s^{\prime}-H_{Q}(t)+H_{n^{\prime}}(t)+1 / s\right) / 2+H_{K} / 2
$$

By the strict convexity of Q at $\partial_{r} \omega$ (see [21], the proof of Proposition 3.6), there is $n^{\prime \prime}$ such that $\left(H_{Q}+H_{n^{\prime}}\right) / 2 \leqslant H_{n^{\prime \prime}}$ and thus $\left(H_{Q}-H_{n^{\prime}}\right) / 2 \geqslant H_{Q}-H_{n^{\prime \prime}}$. This gives

$$
\tilde{v}_{t} \leqslant H_{K}+H_{Q}-H_{n}-|\cdot| /\left(2 s^{\prime}\right)-H_{Q}(t)+H_{n^{\prime \prime}}(t)+1 /(2 s)
$$

For $n \geqslant l$ and n^{\prime}, s and s^{\prime} as above we get

$$
\tilde{v}_{t} \leqslant H_{K} / 2+\left(H_{K}+H_{Q}-H_{n}-|\cdot| / s^{\prime}-H_{Q}(t)+H_{n^{\prime}}(t)+1 / s\right) / 2
$$

As above we get the desired estimate.
For $t \in S_{0}=\bigcap_{l \in \mathbb{N}} S_{l}$, we see as in the first part of the previous arguing that $\tilde{v}_{t}=v_{\infty}^{0}$ satisfies these estimates for all $n(\leqslant l=\infty)$.

For $t \in S \backslash S_{2}$, as in the second part of the arguing just done, we see that these estimates hold for all $n(\geqslant l=1)$.

Finally we put $v_{t}:=\tilde{v}_{t}-H_{K}(t), t \in S$ and are done. \triangleright
Remark 2.6. Let Q be strictly convex at the $\partial_{r} \omega$. By [21, Proposition 3.6] the following are equivalent:
(i) There are plurisubharmonic functions $u_{t}(t \in S)$ on \mathbb{C}^{N} with $u_{t}(t) \geqslant 0$ such that: $(\forall n)$ $\left(\exists n^{\prime}\right)(\forall s)\left(\exists s^{\prime}\right)$ with

$$
u_{t}(z) \leqslant H_{n^{\prime}}(z)-H_{n}(t)+|z| / s-1 / s^{\prime} \quad\left(\forall z \in \mathbb{C}^{N}, t \in S\right)
$$

(ii) C_{Q}^{∞} is bounded on some neighborhood of S_{0} and $1 / C_{Q}^{0}$ is bounded on each compact subset of S_{ω}.

Theorem 2.7. Let Q be strictly convex at the $\partial_{r} \omega$ and suppose that $0 \in \operatorname{int} K$ and L is a function as in $2.2(a)$. For $N>1$ assume that K is smooth in the directions of ∂S_{ω}. If C_{Q}^{∞} and $1 / C_{K}^{0}$ are bounded on some neighborhood of $S_{0}, 1 / C_{Q}^{0}$ and C_{K}^{∞} are bounded on each compact subset of S_{ω} then the representation operator $R: \Lambda_{1}(Q) \rightarrow A(Q)$ has a continuous linear right inverse.
\triangleleft The assertion hold by Theorem 2.3, Proposition 2.5 and Remark 2.6. \triangleright
The equivalent conditions of Theorem 2.7 are fulfilled if ∂Q and ∂K are of Hölder class $C^{1, \lambda}$ for some $\lambda>0$. They are not fulfilled if Q or K is a polyedra, and for $N=1$ if ∂Q or ∂K has a corner [24].

3. The case of one complex variable

In this section we consider the case $N=1$ for which the results of the previous sections can be improved.

Convention 3.1. Further L is an entire function on \mathbb{C} satisfying following conditions:
(i) The zero set of L is a sequence of pairwise distinct simple zeros $\lambda_{k}, k \in \mathbb{N}$, such that $\left|\lambda_{k}\right| \leqslant\left|\lambda_{k+1}\right|$ for each $k \in \mathbb{N}$.
(ii) L is a function of completely regular growth with indicator $H_{Q}+H_{K}$.
(iii) The asymptotic equality holds:

$$
\left|L^{\prime}\left(\lambda_{k}\right)\right|=\exp \left(H_{Q}\left(\lambda_{k}\right)+H_{K}\left(\lambda_{k}\right)+\bar{o}\left(\left|\lambda_{k}\right|\right)\right) \text { as } k \rightarrow \infty
$$

Such function L exists (see for example [10]).
Leont'ev (see [10]) introduced an interpolating function, which is defined with the help of an entire function of one complex variable. Leont'ev's interpolating function is a functional from $A(\operatorname{cl} Q+K)^{\prime} \backslash A(Q)^{\prime}$ for every K (if $Q \neq \operatorname{cl} Q$). With the help of an entire function of two complex variables we give the analogous definition of an interpolating functional from $A(Q)^{\prime}$.

Definition 3.2. Let \tilde{L} be an entire function on \mathbb{C}^{2} such that $\tilde{L}(\cdot, \mu) \in A_{Q}$ for each $\mu \in \mathbb{C}$. Q-interpolating functional we shall call a functional

$$
\Omega_{\tilde{L}}(z, \mu, f):=\mathscr{F}^{-1}(\tilde{L}(\cdot, \mu))_{t}\left(\int_{0}^{t} f(t-\xi) \exp (z \xi) d \xi\right), \quad z, \mu \in \mathbb{C}, f \in A(Q)
$$

where the integral is taken along the interval $[0, t]$.
We show certain properties of $\Omega_{\tilde{L}}$.
Lemma 3.3. (a) $\Omega_{\tilde{L}}(\cdot, \mu, f) \in A_{Q}$ for all $\mu \in \mathbb{C}$ and $f \in A(Q)$.
(b) For all $z, \mu \in \mathbb{C}$ the equality $\Omega_{\tilde{L}}\left(z, z, e_{\mu}\right)=\tilde{l}(\mu, z)$ holds where a function $\tilde{l} \in A\left(\mathbb{C}^{2}\right)$ is such that $\tilde{L}(\mu, z)-\tilde{L}(z, z)=\tilde{l}(\mu, z)(\mu-z)$.
(c) $\Omega_{\tilde{L}}(\mu, z, \cdot) \in A(Q)^{\prime}$ for all $z, \mu \in \mathbb{C}$.
$\triangleleft($ a): We fix $\mu \in \mathbb{C}, f \in A(Q)$ and a domain G with $Q \subset G$ and $f \in A(G)$. We choose a contour C in G which contains in its interior the conjugate diagram of $\tilde{L}(\cdot, \mu)$. If $\gamma(\cdot, \mu)$ is Borel conjugate of $\tilde{L}(\cdot, \mu)$, we have:

$$
\Omega_{\tilde{L}}(z, \mu, f)=\frac{1}{2 \pi i} \int_{C} \gamma(t, \mu)\left(\int_{0}^{t} f(t-\xi) \exp (z \xi) d \xi\right) d t, \quad z \in \mathbb{C} .
$$

Since the function $(t, \mu) \mapsto \gamma(t, \mu)\left(\int_{0}^{t} f(t-\xi) \exp (z \xi) d \xi\right)$ is continuous by $t \in C$ and entire by z, the function $\Omega_{\tilde{L}}(z, \mu, f)$ is entire (with respect to z). From direct upper bounds for $\left|\Omega_{\tilde{L}}(z, \mu, f)\right|$ it follows that $\Omega_{\tilde{L}}(\cdot, \mu, f) \in A_{Q}$.
(b): Obvious.
(c): Since the map $f \mapsto \int_{0}^{t} f(t-\xi) \exp (z \xi) d \xi, t \in Q$, is continuous and linear in $A(Q)$ and $\mathscr{F}^{-1}(Q(\cdot, \mu))$ is a continuous and linear on $A(Q)$, the functional $\Omega_{Q}(z, \mu, \cdot)$ is continuous and linear on $A(Q)$, too. \triangleright

Lemma 3.4. We assume that a function \tilde{L}, as in 3.2, satisfies in addition the following conditions: $\tilde{L}(z, z)=L(z)$ for each $z \in \mathbb{C}$ and $(\forall n)\left(\exists n^{\prime}\right)(\forall s)\left(\exists s^{\prime}\right)(\exists C)$ with

$$
|\tilde{L}(z, \mu)| \leqslant C \exp \left(H_{n^{\prime}}(z)+H_{K}(\mu)+H_{Q}(\mu)-H_{n}(\mu)+|z| / s-|\mu| / s^{\prime}\right) \quad(\forall z, \mu \in \mathbb{C})
$$

Then $\Pi(f):=\left(\Omega_{\tilde{L}}\left(\lambda_{k}, \lambda_{k}, f\right) / L^{\prime}\left(\lambda_{k}\right)\right)_{k \in \mathbb{N}}, f \in A(Q)$, is continuous linear operator from $A(Q)$ into $\Lambda_{1}(Q)$.
\triangleleft We define $\tilde{L}_{k}(z):=\tilde{L}\left(z, \lambda_{k}\right) /\left(L^{\prime}\left(\lambda_{k}\right)\left(z-\lambda_{k}\right)\right), k \in \mathbb{N}$. By using upper bounds for $|\tilde{L}|$, 3.1 (iii) and 3.3 (b), we obtain, that \tilde{L}_{k} is entire function on \mathbb{C} and $(\forall n)\left(\exists n^{\prime}\right)(\forall s)\left(\exists s^{\prime}\right)$ $\left(\exists C_{1}, C_{2}\right)$ such that for all $z \notin U\left(\lambda_{k},\left(1+\left|\lambda_{k}\right|\right)^{-2}\right)$

$$
\begin{gathered}
\left|\tilde{L}_{k}(z)\right| \leqslant C_{1} \exp \left(H_{n^{\prime}}(z)+H_{K}\left(\lambda_{k}\right)+H_{Q}\left(\lambda_{k}\right)-H_{n}\left(\lambda_{k}\right)+|z| / s-\left|\lambda_{k}\right| /\left(s^{\prime}-1\right)\right. \\
\left.+2 \log \left(1+\left|\lambda_{k}\right|\right)-\log \left|L^{\prime}\left(\lambda_{k}\right)\right|\right) \leqslant C_{2} \exp \left(H_{n^{\prime}}(z)-H_{n}\left(\lambda_{k}\right)+|z| / s-\left|\lambda_{k}\right| / s^{\prime}\right) \quad(\forall k \in \mathbb{N})
\end{gathered}
$$

Applying the maximum principle we get that $(\forall n)\left(\exists n^{\prime}\right)(\forall s)\left(\exists s^{\prime}\right)\left(\exists C_{3}\right)$ with

$$
\left|\tilde{L}_{k}(z)\right| \leqslant C_{3} \exp \left(H_{n^{\prime}}(z)-H_{n}\left(\lambda_{k}\right)+|z| / s-\left|\lambda_{k}\right| / s^{\prime}\right) \quad(\forall z \in \mathbb{C}, k \in \mathbb{N})
$$

From this it follows that the series $\sum_{k \in \mathbb{N}} c_{k} \tilde{L}_{k}$ converges absolutely in A_{Q} for each $c=$ $\left(c_{k}\right)_{k \in \mathbb{N}} \in K_{\infty}(Q)$ and $\kappa: c \mapsto \sum_{k \in \mathbb{N}} c_{k} \tilde{L}_{k}$ is continuous linear operator from $K_{\infty}(Q)$ into A_{Q}. We shall find its adjoint operator $\kappa^{\prime}: A(Q) \rightarrow \Lambda_{1}(Q)$:

$$
\begin{gathered}
\left\langle c, \kappa^{\prime}\left(e_{\mu}\right)\right\rangle=\langle\kappa(c), f\rangle=\left\langle\sum_{k \in \mathbb{N}} c_{k} \tilde{L}_{k}, e_{\mu}\right\rangle \\
=\sum_{k \in \mathbb{N}} c_{k} \tilde{L}_{k}(\mu)=\sum_{k \in \mathbb{N}} c_{k} \Omega_{\tilde{L}}\left(\lambda_{k}, \lambda_{k}, e_{\mu}\right) / L^{\prime}\left(\lambda_{k}\right) \quad\left(\forall \mu \in \mathbb{C}, c \in \Lambda_{1}(Q)\right)
\end{gathered}
$$

Hence $\kappa^{\prime}\left(e_{\mu}\right)=\left(\Omega_{\tilde{L}}\left(\lambda_{k}, \lambda_{k}, e_{\mu}\right) / L^{\prime}\left(\lambda_{k}\right)\right)_{k \in \mathbb{N}}, \mu \in \mathbb{C}$. Let $\mathbb{C}^{\mathbb{N}}$ be a space of all number sequence with its natural topologie. The maps $\kappa^{\prime}: A(Q) \rightarrow \mathbb{C}^{\mathbb{N}}$ and $\Pi: A(Q) \rightarrow \mathbb{C}^{\mathbb{N}}$ are continuous and linear. Since the set $\left\{e_{\mu}: \mu \in \mathbb{C}\right\}$ is total in $A(Q)$, we have $\Pi=\kappa^{\prime}$ on $A(Q)$ and Π is continuous and linear from $A(Q)$ into $\Lambda_{1}(Q)$.

Theorem 3.5. (I) Let $0 \in \operatorname{int}_{r} K$. The following assertions are equivalent:
(i) The representation operator $R: \Lambda_{1}(Q) \rightarrow A(Q)$ has a continuous linear right inverse.
(ii) There is an entire function \tilde{L} on \mathbb{C}^{2} such that $\tilde{L}(z, z)=L(z)$ and $(\forall n)\left(\exists n^{\prime}\right)(\forall s)$ $\left(\exists s^{\prime}\right)(\exists C)$ with

$$
|\tilde{L}(z, \mu)| \leqslant C \exp \left(H_{n^{\prime}}(z)+H_{K}(\mu)+H_{Q}(\mu)-H_{n}(\mu)+|z| / s-|\mu| / s^{\prime}\right) \quad(\forall z, \mu \in \mathbb{C})
$$

(iii) Q is strictly convex at $\partial_{r} \omega$, the interior of K is not empty, C_{Q}^{∞} and $1 / C_{K}^{0}$ are bounded on some neighborhood of $S_{0}, 1 / C_{Q}^{0}$ and C_{K}^{∞} are bounded on each compact subset of S_{ω}.
(II) (iv) If \tilde{L} is a function as in (ii), the operator

$$
\Pi(f) \mapsto\left(\Omega_{\tilde{L}}\left(\lambda_{k}, \lambda_{k}, f\right) / L^{\prime}\left(\lambda_{k}\right)\right)_{k \in \mathbb{N}}, \quad f \in A(Q)
$$

is a continuous linear right inverse for R.
(v) If $\Pi: A(Q) \rightarrow \Lambda_{1}(Q)$ is a continuous linear right inverse for R, then there is a unique function \tilde{L} as in (ii) such that $\Pi(f)=\left(\Omega_{\tilde{L}}\left(\lambda_{k}, \lambda_{k}, f\right) / L^{\prime}\left(\lambda_{k}\right)\right)_{k \in \mathbb{N}}, f \in A(Q)$.
\triangleleft (iv) (and (ii) \Rightarrow (i)): Let \tilde{L} be a function as in (ii). Then

$$
\kappa: c \mapsto \sum_{(k) \in \mathbb{N}} c_{k} \frac{\tilde{L}\left(\cdot, \lambda_{k}\right)}{L^{\prime}\left(\lambda_{k}\right)\left(\cdot-\lambda_{k}\right)}
$$

maps continuously (and linearly) $K_{\infty}(Q)$ into A_{Q}. Since for each $f \in A_{Q}$ the function $f \tilde{L}(z, \cdot)$ belongs to $A_{\text {int } Q+K}$, taking into account the Lagrange interpolation formula (1), we obtain:

$$
\begin{gathered}
L(z) \sum_{k \in \mathbb{N}} f\left(\lambda_{k}\right) \frac{\tilde{L}\left(z, \lambda_{k}\right)}{L^{\prime}\left(\lambda_{k}\right)\left(z-\lambda_{k}\right)}=\sum_{k \in \mathbb{N}} f\left(\lambda_{k}\right) \tilde{L}\left(z, \lambda_{k}\right) \frac{L(z)}{L^{\prime}\left(\lambda_{k}\right)\left(z-\lambda_{k}\right)} \\
=L(z, z) f(z)=L(z) f(z) \quad\left(\forall z \in \mathbb{C}, f \in A_{Q}\right)
\end{gathered}
$$

This implies that $\kappa=\Pi^{\prime}$ is a left inverse for R^{\prime}. By the proof of Lemma 3.4κ is the adjoint to Π for each function \tilde{L} as in (ii). Hence Π is a right inverse for R.
$(i) \Rightarrow(i i)$: Let Π be a continuous linear right inverse for R. Then $\kappa:=\Pi^{\prime}: K_{\infty}(A) \rightarrow A_{Q}$ is a left inverse for R^{\prime}. We put $f_{k}:=\kappa\left(e_{(k)}\right)$, where $e_{(k)}:=\left(\delta_{k, n}\right)_{n \in \mathbb{N}}, k \in \mathbb{N}$. By Grothendieck's factorization theorem, for each n there is n^{\prime} such that κ maps continuously proj${ }_{\leftarrow m} K_{n, m}(Q)$

$$
\begin{equation*}
\left|f_{k}(z)\right| \leqslant C \exp \left(H_{n^{\prime}}(z)-H_{n}\left(\lambda_{(k)}\right)+|z| / s-\left|\lambda_{(k)}\right| / r\right) \quad(\forall z \in \mathbb{C}, k \in \mathbb{N}) \tag{4}
\end{equation*}
$$

For $f \in A_{Q}$ let

$$
T_{z}(f)(\mu):=\sum_{k \in \mathbb{N}} \frac{L(\mu)}{\mu-\lambda_{k}}\left(z-\lambda_{k}\right) f_{k}(z) f\left(\lambda_{k}\right), \quad \mu \in \mathbb{C}
$$

By 2.2 (b) (ii) and (4) the series converges absolutely in A_{Q} and converges uniformly (by μ) on compact sets of \mathbb{C}. Fix $z \in \mathbb{C}$. Then $\left.T_{z}(\mu f)(\mu)\right)=\mu T_{z}(f)(\mu)$ for all $f \in A_{Q}$ and $\mu \in \mathbb{C}$. By [12, Lemma 1.7] there is a function $a_{z} \in A(\mathbb{C})$ such that $T_{z}(f)(\mu)=a_{z}(\mu) f(\mu)$ for all $\mu \in \mathbb{C}, f \in A_{Q}$. The function $\tilde{L}(z, \mu):=a_{z}(\mu), z, \mu \in \mathbb{C}$, satisfies the conditions in (ii) (see the proof of (i) \Rightarrow (ii) in [12, Theorem 1.8] too).
(iii) \Rightarrow (i) holds by Theorem 2.7.
(i) \Rightarrow (iii): Since the operator R has a continuous linear righ inverse, $R: \Lambda_{1}(Q) \rightarrow A(Q)$ is surjectiv. By [13, Theorem 8$]$ the set Q is strictly convex at $\partial_{r} \omega$.

Since (i) is equivalent to (ii) there is a function \tilde{L} which satisfies the conditions in (ii). Let P be the (radial) indicator of \tilde{L}, i. e.

$$
P(z, \mu):=\left(\limsup _{t \rightarrow+\infty} \frac{\log |\tilde{L}(t z, t \mu)|}{t}\right)^{*}, \quad z, \mu \in \mathbb{C}
$$

Then P is a plurisubharmonic function on \mathbb{C}^{2} satisfying the conditions in (II) of Theorem 2.3. Hence, by Theorem 2.3, there are subharmonic functions $v_{t}(t \in S$) as in (III) (b). We put $g_{t}(\mu):=|t| v_{t /|t|}(\mu /|t|), \mu, t \in \mathbb{C}, t \neq 0$. Then g_{t} are subharmonic functions on \mathbb{C} such that $g_{t}(t) \geqslant 0$ and $(\forall n)\left(\exists n^{\prime}\right)(\forall s)\left(\exists s^{\prime}\right)$ with

$$
g_{t}(\mu) \leqslant H_{K}(\mu)+H_{Q}(\mu)-H_{n}(\mu)-H_{K}(t)-H_{Q}(t)+H_{n^{\prime}}(t)-|\mu| / s^{\prime}+|t| / s
$$

for all $\mu, t \in \mathbb{C}, t \neq 0$. If $S_{\omega}=\varnothing$, the set Q is open. Hence the following holds: $(\forall n)\left(\exists n^{\prime}\right)$ with

$$
g_{t}(\mu) \leqslant H_{K}(\mu)-H_{K}(t)+|\mu| / s^{\prime}-|t| / s \quad(\forall \mu, t \in \mathbb{C}, t \neq 0) .
$$

Then, by [12, Proposition 1.17], an angle with the corner at 0 doesn't exist in which the support function H_{K} of K is harmonic. Hence int $K \neq \varnothing$. If $S_{\omega} \neq \varnothing$, there is an open (with respect to S) subset A of S such that $H_{n}=H_{Q}$ on A for large n. Let $\Gamma(A):=\{r a: r>0\}$. Then for each s there is s^{\prime} with

$$
g_{t}(\mu) \leqslant H_{K}(\mu)-H_{K}(t)+|t| / s-|\mu| / s^{\prime} \quad(\forall \mu, t \in \mathbb{C}, t \neq 0) .
$$

As in [12, Proposition 1.17] from the maximum principle for harmonic functions it follows that the interior of K is not empty.

By Theorem 2.3, Proposition 2.5 and Remark $2.6 C_{Q}^{\infty}$ and $1 / C_{K}^{0}$ are bounded on some neighborhood of $S_{0}, 1 / C_{Q}^{0}$ and C_{K}^{∞} are bounded on each compact subset of S_{ω}.
(v): By the proof of (i) \Rightarrow (ii) there is an entire function \tilde{L} satisfying the conditions in (ii) and such that $\Pi^{\prime}\left(e_{(k)}\right)=\frac{\tilde{L}\left(\cdot, \lambda_{k}\right)}{L^{\prime}\left(\lambda_{k}\right)\left(\cdot \lambda_{k}\right)}$ for each $k \in \mathbb{N}$. Hence $\Pi^{\prime}(c)=\sum_{k \in \mathbb{N}} c_{k} \frac{\tilde{L}\left(\cdot, \lambda_{k}\right)}{L^{\prime}\left(\lambda_{k}\right)\left(\cdot-\lambda_{k}\right)}$ for each $c \in K_{\infty}(Q)$ and $\Pi(f)=\left(\Omega_{\tilde{L}}\left(\lambda_{k}, \lambda_{k}, f\right) / L^{\prime}\left(\lambda_{k}\right)\right)_{k \in N}$ for all $f \in A(Q)$ (see the proof of Lemma 3.4). We shall show uniqueness of such function \tilde{L}. Let $\tilde{L}_{1}, \tilde{L}_{2}$ be two such functions. Then $\tilde{L}_{1}\left(z, \lambda_{k}\right)=\tilde{L}_{2}\left(z, \lambda_{k}\right)$ for all $k \in \mathbb{N}, z \in \mathbb{C}$. Since $\left\{\lambda_{k}: k \in \mathbb{N}\right\}$ is the uniqueness set for $A_{\text {int } Q+K}($ see $2.2(\mathrm{~b}))$ and $\tilde{L}_{1}(z, \cdot), \tilde{L}_{2}(z, \cdot) \in A_{\text {int } Q+K}$, we get $\tilde{L}_{1}(z, \cdot) \equiv \tilde{L}_{2}(z, \cdot)$ for each $z \in \mathbb{C}$ and, consequently, $\tilde{L}_{1} \equiv \tilde{L}_{2}$ on \mathbb{C}^{2}.

Acknowledgement. The first named author thanks for the support by the Deutscher Akademischer Austauschdienst during his stay at the University of Düsseldorf in autumn 2005.

References

1. Азарин B. С. О субгармонических функциях вполне регулярного роста в многомерном промтранстве // Докл. АН СССР.-1961.-Т. 146, № 4.-С. 743-746.
2. Коробейник Ю. Ф. Представляющие системы // Успехи мат. наук.-1981.-Т. 36, вып. 1.-С. 73126.
3. Коробейник Ю. Ф., Ле Хай Хой. Представляющие системы экспонент в полицилиндрических областях // Мат. сб.-1983.-Т. 122(164), № 4.-С. 458-474.
4. Коробейник Ю. Ф., Мелихов С. Н. Линейный непрерывный правый обратный для оператора представления и конформные отображения // Докл. АН.—1992.—Т. 323, № 5.-С. 826-829.
5. Коробейник Ю. Ф., Мелихов С. Н. Линейный непрерывный правый обратный для оператора представления и приложения к операторам свертки // Сиб. мат. журн.-1993.-T. 34, № 1.-С. 7084.
6. Красичков-Терновский И. Ф. Одна геометрическая лемма, полезная в теории целых функций, и теоремы типа Левинсона // Мат. заметки.-1978.-Т. 24, вып. 4.-С. 531-546.
7. Кривошеев А. С. Критерий разрешимости неоднородных уравнений свертки в выпуклых областях пространства $\mathbb{C}^{n} / /$ Изв. АН СССР. Сер. мат.-1990.-Т. 54, № 3.-С. 480-450.
8. Лелон П., Груман Л. Целые функции многих комплексных переменных.-М.: Мир, 1989.-350 с.
9. Леонтьев $А$. В. О представлении аналитических функций рядами экспонент в полицилиндрической области // Мат. сб.-1972.-Т. 89, № 4.-С. 364-383.
10. Леонтьев А. Ф. Ряды экспонент.-М.: Наука, 1976.-536 с.
11. Мелихов С. Н. Продолжение целых функций вполне регулярного роста и правый обратный для оператора представления аналитических функций рядами квазиполиномов // Мат. сб.-2000.Т. 191, № 7.-С. 105-128.
12. Мелихов С. Н. О левом обратном к оператору сужения на весовых пространствах целых функций // Алгебра и анализ.-2002.-Т. 14, вып. 1.-С. 99-133.
13. Мелихов С. Н., Момм З. О свойстве внутрь-продолжаемости представляющих систем экспонент на выпуклых локально замкнутых множествах // Владикавк. мат. журн.-2008.-Т. 10, вып. 2.C. $36-45$.
14. Папуш Д. Е. О росте целых функций с «плоскими» нулями // Теория функций, функцион. анализ и их прил.-1987.-Вып. 48.-С. 117-125.
15. Секерин А. Б. О представлении аналитических функций многих переменных рядами экспонент // Изв. РАН. Сер. мат.-1992.-Т. 56, № 3.-С. 538-565.
16. Хермандер Л. Введение в теорию функций нескольких комплексных переменных.-М.: Мир, 1968.-280 с.
17. Эдвардс P. Функциональный анализ. Теория и приложения.-М.: Мир, 1969.-1071 с.
18. Gruman L. Entire functions of several variables and their asymptotic growth // Ark. Mat.-1971.Vol. 9.-P. 141-163.
19. Matheron G. Random sets and integral geometry.- New York: Wiley, 1975.-xxiii+261 p.
20. Melikhov S. N., Momm S. Solution operators for convolution equations on the germs of analytic functions on compact convex sets on \mathbb{C}^{N} // Studia Math.-1995.-Vol. 117.-P. 79-99.
21. Melikhov S. N., Momm S. Analytic solutions of convolution equations on convex sets with obstacle in the boundary // Math. Scand.-2000.-Vol. 86.-P. 293-319.
22. Momm S. Division problem in spaces of entire functions of finite order // Functional Analysis.-1993.P. 435-457.
23. Momm S. The boundary behavior of extremal plurisubharmonic functions // Acta Math.-1994.Vol. 172.-P. 51-75.
24. Momm S. Extremal plurisubharmonic functions for convex bodies in $\mathbb{C}^{N} / /$ Complex analysis, harmonic analysis and appl. / Deville R. (Bordeaux, France, 1995).-Harlow: Longman, Bitman.-1996.Vol. 347.-P. 87-103.-(Res. Notes Math. Ser.)
25. Momm S. An extremal plurisubharmonic functions associated to a convex pluricomplex Green function with pole at infinity // J. Reine Angew. Math.-1996.-Vol. 471.-P.139-163.
26. Schneider R. Convex bodies: The Brunn-Minkowski theory.-Cambridge: Cambridge University Press, 1993.-490 p.

Received February 1, 2010.
Melikhov Sergej Nikolaevich
Southern Mathematical Institute
Vladikavkaz Science Center of the RAS,
chief of complex analysis laboratory
RUSSIA, 362027, Vladikavkaz, Markus street, 22;
Southern Federal University
Department of Mathematics, Mechanics and Computer Science RUSSIA, 344090 Rostov on Don, 344090, Mil'chakova street, 8 a
E-mail: melih@math.rsu.ru
Momm Siegfried
Mathematisches Institut
Heinrich-Heine Universität Düsseldorf
GERMANY, 40225, Düsseldorf, Universitätsstrasse, 1
E-mail: siegfried.momm@t-online.de

О РАЗЛОЖЕНИИ В РЯДЫ ЭКСПОНЕНТ ФУНКЦИЙ, АНАЛИТИЧЕСКИХ НА ВЫПУКЛЫХ ЛОКАЛЬНО ЗАМКНУТЫХ МНОЖЕСТВАХ

Мелихов С. Н., Момм 3.
Пусть Q - ограниченное, выпуклое, локально замкнутое подмножество \mathbb{C}^{N} с непустой внутренностью. Для $N>1$ получены достаточные условия того, что оператор представления рядами экспонент функций, аналитических на Q, имеет линейный непрерывный правый обратный. Для $N=1$ доказаны критерии существования линейного непрерывного правого обратного к оператору представления.

Ключевые слова: локально замкнутое множество, аналитические функции, ряды экспонент, линейный непрерывный правый обратный.

[^0]: (c) 2011 Melikhov S. N., Momm S.

