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INCLUSION PROPERTIES FOR CERTAIN SUBCLASSES
OF p-VALENT FUNCTIONS ASSOCIATED
WITH NEW GENERALIZED DERIVATIVE OPERATOR!

E. A. Eljamal, M. Darus

In this paper we introduce several new classes of p-valent functions defined by new generalized derivative
operator and investigate various inclusion properties of these classes. Some interesting applications
involving classes of integral operators are also considered.

Mathematics Subject Classification (2000): 30C45.

Key words: p-valent functions, derivative operator, integral operator, inclusion properties.

1. Introduction

Let A(p) denote the class of functions of form

fR) =2+ > at (peN={12,..}), (1.1)

k=p+1

which are analytic and p-valent in the open unit disk U = {z : z € C, |2| < 1}. A function
f € A(p) is said to be in the class S;(a) of p-valently starlike functions of order a in U if and
only if

2f'(2)
Re{ B }>a 0<a<p). (1.2)

A function f € A(p) is said to be in the class Cp(a) of p-valently convex functions of order o
if and only if

2f'(2)
Re{l—i— B }>a (0 < a<p). (1.3)

It is easy to prove from (1.2) and (1.3) that
1(2) € Gyla) & —f'(2) € 5 (). (14)

For a function f € A(p) we say that f € K(8, ) if there exists a function g € S;(«) such
that

/
Re{zf((j)}>ﬁ (zeU;, 0<a<p, 0<p). (1.5)
g(z
Functions in the class K,(3,«) are called p-valently close-to-convex functions of order [
type a. We also say that a function f € A(p) is in the class K/ (8, ) of p-valently quasi
convex functions of order [ type « if there exists a function g € Cp(«) such that
(2f'(2))

Re{w}>ﬁ (0<a<p, 0<4). (1.6)
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It follows easily from (1.5) and (1.6) that
f(z) € Ki(B,a) & gf’(z) € K,(f, ). (1.7)

Now we will introduce a new generalized derivative operator D7\ f@ is defined by

D;/\f(Q) : A(p) — A(p). For each f € A(p) we have
! — kK
f@(z) = P ey Z (=] arz"1 (g e Ny =NU{0}, p>q). (1.8)

For a function f € A(p) we define Dg’/\f(‘I)(z) = f@(2).

DiAFO() = DI () = ——[=( D) + A0 (2)
= p++_q DG+ A 0()] = 0 f!q)!zp_q (1.9)
+§1 k! (ﬁii:;f)akzk—q (eNg=NU{0}, A>0, p>q).

e DL = < L9 ()

(p T q+kzp;1 ol (ﬁii‘:g):kqu (1.10)
(geNo =NU{0}, A >0, p>q).

e D2, fD(2) = DD 19(2))

(p T q+k§rl ! <I;:[;:Z)nakzk—q (1.11)

(meN, geNg=NU{0}, A>0, p>q).

Special cases of this operator includes, the Aghalary derivative operator D \ fO(z) =
»f(2) [1], the Cho and Kim derivative operator DY fO(2) = DY f(2) [2] and Salagean
derlvatlve operator DY f ©)(2) = D™ [3]. Furthermore, we have

2Dy fD(2)) = (p+ A =)D FD(2) = ADp\ f19(2). (1.12)

Next by using the derivative operator D f9(2), we introduce the following subclasses
of A(p)

S*[p,\,q,n,a] == {f: f € A(p) and D;/\f(q)(z) €Sy(a) (0<a <p)}; (1.13)

Clp, A\, ¢,n,a] :== {f: f € A(p) and D;;?)\f(q)(z) ceCpla) (0<a< p)}; (1.14)

K,p, A\ q,n,B,a] := {f : f € A(p) and Dg7Af(Q)(z) € Kp(f,0) (0<a<p;0< ﬁ)}; (1.15)
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And

K*p, A a,n,8,0] = {f 5 f € Ap) and Do f9(2) € K;(B,0) (0< a <3 0< B}

To prove our main results, we need the following lemma which is popularly known as the
Miller-Mocanu Lemma.

Lemma 1.1 (Miller and Mocanu [7]). Let 6(v,v) be a complex-valued function such that
0:D—-C (DcCxCQC),
where C is complex plane, and let
v=wv1 +1ivy and vV =1+ 1ils.
Suppose also that the function 0(v,v) satisfies each the following conditions:
(i) 6(v,v) is continuous in Dj

(ii) (1,0) € D and Re(6(1,0)) > 0;
(iii) Re(f(ive,v1)) < 0 for all (ive,v1) € D such that

< — (1 —|—v§).

DN |

Let
p(z) =1+ prz+p22 +p32 + ... (1.16)
be analytic in U such that
(p(2),2p'(2)) €D (2 € V).
If Re(0(p(2),2p'(2)) > 0 (z € U), then Re(p(z)) >0 (z € U).

2. The Main Inclusion Relationships

In this section we will investigate several inclusion relationships for p-valent functions
classes, which are associated the derivative operator D, f @(2). Our first theorem is the
following

Theorem 2.1. Let f € A(p). Suppose also that (A > 0,0 < a <p, p > q). Then
S*p,Ayg;n+1,0] € S*[p, A gm0 (p+A>¢q, 0<a<p). (2.1)
< Let f(z) € S*[p,\,q¢,n + 1,a] and set

Z(ng)\f(Q)(Z)),

ng)\f@)(z) =a+ (p - a)p(z) (2'2)

where p(z) is given by (1.16) by applying the identity (1.12) we obtain

Dgﬁf(q)@)) (Dﬁ,xf(")(?«‘))'

W —7 Dﬁ/\f(q)(z) +A=({@—-a)pz)+a+ A

@+A—®<
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By using logarithmic differentiation on both sides of the above equation, we have

Z(D;jlf(q)(z))/ Z(D;L,Af(")(?«‘))/ (p —a)zp'(2)

D) Dnf@()  (p-a)p(z) + ot A

(p—a)zp'(2)
(p—a)p(z) +a+ X\

=(p—a)p(z) +a+

We now choose v = p(z) = vy +ivy and v = 2p/(z) = 11 + ive, and define the function (v, v)
by
(p—a)r

O(v,v)=(p—a)v+ —avtat

(2.3)

Then, clearly, (v, v) is continuous in

D:(@\{A“‘})x@ and  (1,0) € D with Re(6(1,0)) > 0.

p—a
Moreover, for all (ivg, 1) € D such that v < —3 (1 + v3) we have

(p—a)n )
(p—a)ivg+a+ )’

Re(&(ivg, I/l)) = Re <

pP—a)etNm _  —(p—a)(1+v))
(p—a)v3 +(a+ 22 " 2([(p— a)2]” + (a+ \)?)
Which shows that 0(v,v) satisfies the conditions of Lemma 1.1.

This shows that if Ref(p(z),2p'(z)) > 0 (2 € U), then Rep(z) > 0 (z € U), that is if
f9(2) € S*[p, A\, q,n + 1,a] then f@(z) € S*[p,\,q,n,a]. Then proof is of Theorem 2.1 is
complete

Theorem 2.2. Let f € A(p). Suppose also that (A > 0, 0 < o < p, p > q). Then
Clp,\,g;n+1,0] C Clp, A\, q¢,n+ 1, .

< Let f € Clp,\,q,n+1,«a]. Then by (1.14), we have (nglf(q)(z)) € Cp(a) furthermore,
in view of the relationship (1.4) we find that

z /!
]—)(D;?jlf(q)(Z)) € 83 (),
that is, that

p
Thus by (1.13) and Theorem 2.1, we have

Dt (2(1) ) € 3@

gf@“)(z) € 5*[p, A\ q,n+ 1,0] C S*[p, A, q,n, a,
which implies that
Clp, A\ g,n+1,a] C Clp, A, q,n,al.

The proof of Theorem 2.2 thus complete. >
Theorem 2.3. Let f € A(p). Suppose also that (A > 0,0< a <p,p>gq, [ >0). Then

Kp,\,¢,n+1,a] C K[p,\,q,n,a] (p+A>¢q, 0<a<p, §=0). (2.4)
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< Let f(2) € K[p,\,q,n + 1,a]. Then there exists a function 1)(z) € S, (a) such that

(D3 £9(2))
fre ( e

We set Dgf\lg(‘”(z) = 1(2), so that we have

>>5 (z€U).

2Dy 9 (2))
Dy3lgla)(z)

g(z) € S*[p,\,¢,n+1,a] and Re( >>ﬁ (zeU).

Now we put
(D f9(2))
Dypitg@(z)

=B+ (p—B)p(2), (2.5)
where p(z) is given, as before by (1.16) and using (1.12). From (2.5) we have
ADp D) = Dpilg ()8 + (0 = B)p(2)]. (2.6)
2(Dpif9E)" DR () 2D I (2))]) A (DS (2)
Drg@(z)  DIf@()  2(Dg@(2) + ADE g (2)

2[Dp, (£ @)
DS,AH(Q) (2)

!/
(D0 ()
Dy 9D (2)

N CRRIO)

FA G e

+ A
Since g(z) € S*[p, A\, q,n + 1, q]

2(D", g @ (2))’
(nggg(q) ((z))) =a+(p—a)G(2),

where
G(z) = q1(z,y) +ig2(x,y) and Re(G(2)) = gi(x,y) > 0.

Then ,
n (zfla+) (4
(DP9 (2)) (DP’E(;,IM(Z() DL 5+ (o - Hp(a)
Dl (2) B a+(p—a)G(z) + A 2D

we get from (2.6) that
2(Dpf9(2)) = Dy g ()8 + (0 — B)p(2))- (2.8)
Upon differentiating both sides of (2.8) with respect to z we have

2[2(DpAf9(2)']'

D7 g(@(2) =(p—PB)zp'(2)+a+ pP-a)GR)B+@@—-Bpk)].  (29)

By substituting (2.9) into (2.7) we obtain

z(D”“f(‘J)(Z))'
z(D;:{lg(z))

(p — B)2p'(2)
(p—a)G(z) +a+ A

- B=(-B)p(z)+
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we now choose v = p(z) = vy +ive and v = 2p'(2) = 11 + ivy. If we defined the function
O(v,v) by
(p— B)v

O(v,v) = (p—B)v + (p—a)G(z) +a+ A

(2.10)

where

(v,v) eD=(C\D")xC

and

A
D* := {z: z€C and Re(G(z)) =gi(z,y) > pjz}

it is easy to see that (v,v) is continuous in D and (1,0) € D with Re(#(1,0)) > 0. Moreover,
for all (ivg,v1) € D such that

—= (14 v3)

L\’JI»—A

v <

we have Re(6(1,0)) = Re (%)

(p = B)nllp — a)g1(z,y) + a+ )
[(p — )g1(z,y) + a+ A+ [(p — @)g2(=, y)]?

~(=B)(L+v3)[(p — )gi(w,y) + o+ A]
S 2(p - a)gi(@y) + o+ AP+ [(p - a)ga(w, )]
Which shows that (v, ) satisfies the conditions of Theorem 2.1. This completes the proof
of Theorem 2.3.

Theorem 2.4. Let f € A(p). Suppose also that (A > 0,0< a <p,p>gq, > 0). Then

< 0.

K*p,\,q¢,n+ 1,0 C K*[p,\,¢,n,a] (p+A>q 0<a<p, §=0). (2.11)

<0 We can prove Theorem 2.4 by using Theorem 2.3 in conjunction with the equation (1.7).
Next we will study the integral operator given by [8]. >

3. Integral Operator

For ¢ > —p and f(z) € A(p) define the integral operator J.,(f(2)) as

z

Jenl(f(2) = S22 / £ L f (1) dt (3.1)

2¢
0
The operator J.1(f(2)) (¢ € N) was introduced by Bernardi [4]. In particular, the operator

J1,1(f(2)) was introduced earlier by Libera [5] and Livingston [6].

Theorem 3.1. Let f € A(p). Suppose also that (A > 0,0 < a <p, p> q and c > —p).
If f(2) € S*[p, A\, q,n, o then J.p(f(2))S*[p, A, q,n, .
< Let f(z) € S*[p, A, q,n,a]. From (3.1) we have

2(Dpadep(FO(2)) = (e + DIDEATD () — DTy (F9(2)) (3:2)
set
2(DpaTen(F9(2)))
Dy Jep(F@(2))

=a+(p—a)p(z). (3.3)
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Where p(z) is given by (1.16) and using the identity (3.2) we have

Dn f(q)(z) 1
an?/\p(f@(z)) - Cer{chOhL (p—a)p(2)}- (3.4)
pAYC
Differentiating (3.4), we obtain
- (Dnso) bt
Dr f@(z) a=(p—a)ple) + b — o)’ (3.5)

Now we define the function §(v,v) by taking v = p(z), v = zp/(z) then (3.5) become as

p—a)y
ct+a+(p—a)j’

O(v,v) =(p—a)v+

It is easy to see that the function 0(v,v) satisfies conditions (i) and (ii) of Lemma 1 in

D= ((C \ {%}) x C. Now we will prove third condition

Re{0(iva,v1)} = Re { c+ Ofﬁ__(;)—yla)ivg }

_ (p—a)(c+ ) < —(p—a)(c—i—oa)(l—i—vg) <0
(c4+ )2+ (p—a)20? = 2[(c+ )2+ (p — a)203] ’

The function 6(v,v) satisfies conditions of Lemma 1.1. This shows that if
Re{0(p(z),zp'(z))} > 0 (z € U) then Rep(z) > 0 (z € U), that is if f(z) € S*[p,\, ¢, n,al.
The prove is complete.

Theorem 3.2. Let f € A(p). Suppose also that (A > 0,0 < a <p,p>gq,c> —p). If
f(2) € Clp, A\, q,n,a] then J.p, € Clp, A, q,n, a.

!
< f(z) € Clp, A\ q,n, o] = %}2) € S*p, A\ q,n, o] = Jep

/
Zf])(Z) 6 S* [p7 A? Q’ n? a]

= ]%Jqp(f(z))' € S*[p, A g, n, ] = Jep(f(2)) € Clp, A, g, m, .

This completes the proof of Theorem 3.2. >
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BJIOZKEHUA J1JIA1 HEKOTOPBIX ITOIKJ/TACCOB
p-JIUCTHBIX OYHKIINN, CBA3AHHBLIX C OBOBIHIEHHBLIM
OIIEPATOPOM JNOPEPEHIIMPOBAHNMSA

Qupmxkavan . A., Japyc M.

BeonsiTcst HOBBIE KJ1aCChI aHAJIUTUYIECKUX P-JIMCTHBIX (DYHKIWI, OnpeiesisieMbie 0600IEHHBIM OITEPATOPOM
muddepeHInpOBaHusl, U U3yYaOTCs pa3INIHbIE BJIOXKEHUS STUX KJIACCOB. PaccMaTpuBarOTCs HEKOTOPbhIE
MHTepeCHble TPUJIOXKEHNs, BKJIIOYasd KJIacChl HHTErPAJIbHBIX OIIepaTOPOB.

KuroueBbie ciioBa: p-ucTHasi (GyHKIUs, orneparop audepeHInpoBaHisi, NHTErPAJBHBIN OmepaTop,
CBOMCTBO BJIOYKEHUS.



