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INCLUSION PROPERTIES FOR CERTAIN SUBCLASSES
OF p-VALENT FUNCTIONS ASSOCIATED

WITH NEW GENERALIZED DERIVATIVE OPERATOR1

E. A. Eljamal, M. Darus

In this paper we introduce several new classes of p-valent functions defined by new generalized derivative
operator and investigate various inclusion properties of these classes. Some interesting applications
involving classes of integral operators are also considered.
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1. Introduction

Let A(p) denote the class of functions of form

f(z) = zp +

∞∑

k=p+1

akz
k (p ∈ N = {1, 2, . . .}), (1.1)

which are analytic and p-valent in the open unit disk U = {z : z ∈ C, |z| < 1}. A function
f ∈ A(p) is said to be in the class S∗

p(α) of p-valently starlike functions of order α in U if and
only if

Re

{
zf ′(z)
f(z)

}
> α (0 6 α < p). (1.2)

A function f ∈ A(p) is said to be in the class Cp(α) of p-valently convex functions of order α
if and only if

Re

{
1 +

zf ′(z)
f(z)

}
> α (0 6 α < p). (1.3)

It is easy to prove from (1.2) and (1.3) that

f(z) ∈ Cp(α) ⇔ z

p
f ′(z) ∈ S∗

p(α). (1.4)

For a function f ∈ A(p) we say that f ∈ Kp(β, α) if there exists a function g ∈ S∗
p(α) such

that

Re

{
zf ′(z)
g(z)

}
> β (z ∈ U ; 0 6 α < p, 0 6 β). (1.5)

Functions in the class Kp(β, α) are called p-valently close-to-convex functions of order β
type α. We also say that a function f ∈ A(p) is in the class K ∗

p(β, α) of p-valently quasi
convex functions of order β type α if there exists a function g ∈ Cp(α) such that

Re

{
(zf ′(z))′

g′(z)

}
> β (0 6 α < p, 0 6 β). (1.6)
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It follows easily from (1.5) and (1.6) that

f(z) ∈ K∗
p(β, α) ⇔ z

p
f ′(z) ∈ Kp(β, α). (1.7)

Now we will introduce a new generalized derivative operator Dn
p,λf

(q) is defined by

Dn
p,λf

(q) : A(p) → A(p). For each f ∈ A(p) we have

f (q)(z) =
p!

(p− q)!
zp−q +

∞∑

k=p+1

k!

(k − q)!
akz

k−q (q ∈ N0 = N ∪ {0}, p > q). (1.8)

For a function f ∈ A(p) we define D0
p,λf

(q)(z) = f (q)(z).

D1
p,λf

(q)(z) = Df (q)(z) =
1

p+ λ− q

[
z(f (q)(z))′ + λf (q)(z)

]

=
1

p+ λ− q

[
zf (q+1)(z) + λf (q)(z)

]
=

p!

(p− q)!
zp−q

+

∞∑

k=p+1

k!

(k − q)!

(
k + λ− q

p+ λ− q

)
akz

k−q (q ∈ N0 = N ∪ {0}, λ > 0, p > q).

(1.9)

And
D2

p,λf
(q)(z) = D(D1

p,λf
(q)(z))

=
p!

(p− q)!
zp−q +

∞∑

k=p+1

k!

(k − q)!

(
k + λ− q

p+ λ− q

)2

akz
k−q

(q ∈ N0 = N ∪ {0}, λ > 0, p > q).

(1.10)

And
Dn

p,λf
(q)(z) = D(Dn−1

p,λ f (q)(z))

=
p!

(p− q)!
zp−q +

∞∑

k−p+1

k!

(k − q)!

(
k + λ− q

p+ λ− q

)n

akz
k−q

(n ∈ N, q ∈ N0 = N ∪ {0}, λ > 0, p > q).

(1.11)

Special cases of this operator includes, the Aghalary derivative operator Dn
p,λ f (0)(z) =

Dn
p,λf(z) [1], the Cho and Kim derivative operator Dn

1,λf
(0)(z) = Dn

λf(z) [2] and Salagean

derivative operator Dn
1,0f

(0)(z) = Dn [3]. Furthermore, we have

z(Dn
p,λf

(q)(z))′ = (p+ λ− q)Dn+1
p,λ f (q)(z) − λDn

p,λf
(q)(z). (1.12)

Next by using the derivative operator Dn
p,λf

(q)(z), we introduce the following subclasses
of A(p)

S∗[p, λ, q, n, α] :=
{
f : f ∈ A(p) and Dn

p,λf
(q)(z) ∈ S∗

p(α) (0 6 α < p)
}

; (1.13)

C[p, λ, q, n, α] :=
{
f : f ∈ A(p) and Dn

p,λf
(q)(z) ∈ Cp(α) (0 6 α < p)

}
; (1.14)

Kp[p, λ, q, n, β, α] :=
{
f : f ∈ A(p) and Dn

p,λf
(q)(z) ∈ Kp(β, α) (0 6 α < p; 0 6 β)

}
; (1.15)
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And

K∗[p, λ, q, n, β, α] :=
{
f : f ∈ A(p) andDn

p,λf
(q)(z) ∈ K∗

p(β, α) (0 6 α < p; 0 6 β)
}
.

To prove our main results, we need the following lemma which is popularly known as the
Miller–Mocanu Lemma.

Lemma 1.1 (Miller and Mocanu [7]). Let θ(υ, ν) be a complex-valued function such that

θ : D → C (D ⊂ C × C),

where C is complex plane, and let

υ = υ1 + iυ2 and ν = ν1 + iν2.

Suppose also that the function θ(υ, ν) satisfies each the following conditions:

(i) θ(υ, ν) is continuous in D;

(ii) (1, 0) ∈ D and Re(θ(1, 0)) > 0;

(iii) Re(θ(iυ2, ν1)) 6 0 for all (iυ2, ν1) ∈ D such that

ν1 6 −1

2

(
1 + υ2

2

)
.

Let

p(z) = 1 + p1z + p2z
2 + p3z

3 + . . . (1.16)

be analytic in U such that

(p(z), zp′(z)) ∈ D (z ∈ U).

If Re(θ(p(z), zp′(z)) > 0 (z ∈ U), then Re(p(z)) > 0 (z ∈ U).

2. The Main Inclusion Relationships

In this section we will investigate several inclusion relationships for p-valent functions
classes, which are associated the derivative operator Dn

p,λf
(q)(z). Our first theorem is the

following

Theorem 2.1. Let f ∈ A(p). Suppose also that (λ > 0, 0 6 α < p, p > q). Then

S∗[p, λ, q, n+ 1, α] ⊂ S∗[p, λ, q, n, α] (p+ λ > q, 0 6 α < p). (2.1)

C Let f(z) ∈ S∗[p, λ, q, n+ 1, α] and set

z
(
Dn

p,λf
(q)(z)

)′

Dn
p,λf

(q)(z)
= α+ (p− α)p(z) (2.2)

where p(z) is given by (1.16) by applying the identity (1.12) we obtain

(p+ λ− q)

(
Dn+1

p,λ f (q)(z)

Dn
p,λf

(q)(z)

)
= z

(
Dn

p,λf
(q)(z)

)′

Dn
p,λf

(q)(z)
+ λ = (p− α)p(z) + α+ λ.
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By using logarithmic differentiation on both sides of the above equation, we have

z
(
Dn+1

p,λ f (q)(z)
)′

Dn+1
p,λ f (q)(z)

=
z
(
Dn

p,λf
(q)(z)

)′

Dn
p,λf

(q)(z)
+

(p− α)zp′(z)
(p− α)p(z) + α+ λ

= (p− α)p(z) + α+
(p− α)zp′(z)

(p− α)p(z) + α+ λ
.

We now choose υ = p(z) = υ1 + iυ2 and ν = zp′(z) = ν1 + iν2, and define the function θ(υ, ν)
by

θ(υ, ν) = (p− α)υ +
(p− α)ν1

(p− α)υ + α+ λ
. (2.3)

Then, clearly, θ(υ, ν) is continuous in

D =

(
C \

{
λ+ α

p− α

})
× C and (1, 0) ∈ D with Re(θ(1, 0)) > 0.

Moreover, for all (iυ2, ν1) ∈ D such that ν1 6 −1
2

(
1 + υ2

2

)
we have

Re(θ(iυ2, ν1)) = Re

(
(p− α)ν1

(p− α)iυ2 + α+ λ

)
,

(p− α)(α+ λ)ν1

(p− α)υ2
2 + (α+ λ)2

6
−(p− α)(1 + υ2

2)

2
([

(p− α)υ2
2

]2
+ (α + λ)2

) < 0.

Which shows that θ(υ, ν) satisfies the conditions of Lemma 1.1.
This shows that if Re θ(p(z), zp′(z)) > 0 (z ∈ U), then Re p(z) > 0 (z ∈ U), that is if

f (q)(z) ∈ S∗[p, λ, q, n + 1, α] then f (q)(z) ∈ S∗[p, λ, q, n, α]. Then proof is of Theorem 2.1 is
complete

Theorem 2.2. Let f ∈ A(p). Suppose also that (λ > 0, 0 6 α < p, p > q). Then

C[p, λ, q, n+ 1, α] ⊂ C[p, λ, q, n+ 1, α].

C Let f ∈ C[p, λ, q, n+1, α]. Then by (1.14), we have (Dn+1
p,λ f (q)(z)) ∈ Cp(α) furthermore,

in view of the relationship (1.4) we find that

z

p

(
Dn+1

p,λ f (q)(z)
)′

∈ S∗
p(α),

that is, that

Dn+1
p,λ

(
z

p

(
f (q+1)(z)

))
∈ S∗

p(α).

Thus by (1.13) and Theorem 2.1, we have

z

p
f (q+1)(z) ∈ S∗[p, λ, q, n+ 1, α] ⊂ S∗[p, λ, q, n, α],

which implies that
C[p, λ, q, n+ 1, α] ⊂ C[p, λ, q, n, α].

The proof of Theorem 2.2 thus complete. B

Theorem 2.3. Let f ∈ A(p). Suppose also that (λ > 0, 0 6 α < p, p > q, β > 0). Then

K[p, λ, q, n+ 1, α] ⊂ K[p, λ, q, n, α] (p+ λ > q, 0 6 α < p, β > 0). (2.4)
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C Let f(z) ∈ K[p, λ, q, n+ 1, α]. Then there exists a function ψ(z) ∈ S∗
p(α) such that

Re

(
z(Dn+1

p,λ f (q)(z))′

ψ(z)

)
> β (z ∈ U).

We set Dn+1
p,λ g(q)(z) = ψ(z), so that we have

g(z) ∈ S∗[p, λ, q, n+ 1, α] and Re

(
z(Dn+1

p,λ f (q)(z))′

Dn+1
p,λ g(q)(z)

)
> β (z ∈ U).

Now we put
z
(
Dn+1

p,λ f (q)(z)
)′

Dn+1
p,λ g(q)(z)

= β + (p− β)p(z), (2.5)

where p(z) is given, as before by (1.16) and using (1.12). From (2.5) we have

z(Dn+1
p,λ f (q)(z))′ = Dn+1

p,λ g(q)(z)[β + (p− β)p(z)]. (2.6)

z
(
Dn+1

p,λ f (q)(z)
)′

Dn
p,λg

(q)(z)
=
Dn+1

p,λ

(
zf (q+1)(z)

)

Dn+1
p,λ f (q)(z)

=
z
[
Dn

p,λ(zf (q+1)(z))
]′

+ λ
(
Dn

p,λf
(q+1)(z)

)

z(Dn
p,λg

(q)(z)) + λDn
p,λg

(q)(z)

=

z
[
Dn

p,λ

(
zf(q+1)(z)

)]
′

Dn
p,λg(q)(z)

+ λ
Dn

p,λ

(
zf(q+1)(z)

)

Dn
p,λg(q)(z)

z
(
Dn

p,λg(q)(z)
)
′

Dn
p,λg(q)(z)

+ λ

.

Since g(z) ∈ S∗[p, λ, q, n+ 1, α]

z
(
Dn

p,λg
(q)(z)

)′

Dn
p,λg

(q)(z)
= α+ (p− α)G(z),

where
G(z) = g1(x, y) + ig2(x, y) and Re (G(z)) = g1(x, y) > 0.

Then

z
(
Dn+1

p,λ f (q)(z)
)′

Dn+1
p,λ g(q)(z)

=

(
Dn

p,λ

(
zf(q+1)(z)

))
′

Dn
p,λg(q)(z)

+ λ[β + (p− β)p(z)]

α+ (p− α)G(z) + λ
(2.7)

we get from (2.6) that

z
(
Dn

p,λf
(q)(z)

)′
= Dn

p,λg
(q)(z)[β + (p− β)p(z)]. (2.8)

Upon differentiating both sides of (2.8) with respect to z we have

z
[
z
(
Dn

p,λf
(q)(z)

)′]′

Dn
p,λg

(q)(z)
= (p− β)zp′(z) + [α+ (p− α)G(z)][β + (p− β)p(z)]. (2.9)

By substituting (2.9) into (2.7) we obtain

z
(
Dn+1f (q)(z)

)′

z
(
Dn+1

p,λ g(z)
) − β = (p− β)p(z) +

(p− β)zp′(z)
(p− α)G(z) + α+ λ
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we now choose υ = p(z) = υ1 + iυ2 and ν = zp′(z) = ν1 + iν2. If we defined the function
θ(υ, ν) by

θ(υ, ν) = (p− β)υ +
(p− β)ν

(p− α)G(z) + α+ λ
(2.10)

where
(υ, ν) ∈ D = (C \ D∗) × C

and

D∗ :=

{
z : z ∈ C and Re(G(z)) = g1(x, y) >

λ+ α

p− α

}

it is easy to see that (υ, ν) is continuous in D and (1, 0) ∈ D with Re(θ(1, 0)) > 0. Moreover,
for all (iυ2, ν1) ∈ D such that

ν1 6 −1

2

(
1 + υ2

2

)

we have Re(θ(1, 0)) = Re
(

(p−β)ν1

(p−α)G(z)+α+λ

)

(p− β)ν1[(p− α)g1(x, y) + α+ λ]

[(p− α)g1(x, y) + α+ λ]2 + [(p− α)g2(x, y)]2

6
−(p− β)(1 + υ2

2)[(p− α)g1(x, y) + α+ λ]

2[(p− α)g1(x, y) + α+ λ]2 + [(p− α)g2(x, y)]2
< 0.

Which shows that θ(υ, ν) satisfies the conditions of Theorem 2.1. This completes the proof
of Theorem 2.3.

Theorem 2.4. Let f ∈ A(p). Suppose also that (λ > 0, 0 6 α < p, p > q, β > 0). Then

K∗[p, λ, q, n+ 1, α] ⊂ K∗[p, λ, q, n, α] (p+ λ > q, 0 6 α < p, β > 0). (2.11)

C We can prove Theorem 2.4 by using Theorem 2.3 in conjunction with the equation (1.7).
Next we will study the integral operator given by [8]. B

3. Integral Operator

For c > −p and f(z) ∈ A(p) define the integral operator Jc,p(f(z)) as

Jc,p(f(z)) =
c+ p

zc

z∫

0

tc−1f(t) dt. (3.1)

The operator Jc,1(f(z)) (c ∈ N) was introduced by Bernardi [4]. In particular, the operator
J1,1(f(z)) was introduced earlier by Libera [5] and Livingston [6].

Theorem 3.1. Let f ∈ A(p). Suppose also that (λ > 0, 0 6 α < p, p > q and c > −p).
If f(z) ∈ S∗[p, λ, q, n, α] then Jc,p(f(z))S∗[p, λ, q, n, α].

C Let f(z) ∈ S∗[p, λ, q, n, α]. From (3.1) we have

z
(
Dn

p,λJc,p

(
f (q)(z)

))′
= (c+ p)Dn

p,λf
(q)(z) − cDn

p,λJc,p(f
(q)(z)) (3.2)

set
z
(
Dn

p,λJc,p

(
f (q)(z)

))′

Dn
p,λJc,p(f (q)(z))

= α+ (p− α)p(z). (3.3)
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Where p(z) is given by (1.16) and using the identity (3.2) we have

Dn
p,λf

(q)(z)

Dn
p,λJc,p(f (q)(z))

=
1

c+ p

{
c+ α+ (p− α)p(z)

}
. (3.4)

Differentiating (3.4), we obtain

z
(
Dn

p,λf
(q)(z)

)′

Dn
p,λf

(q)(z)
− α = (p− α)p(z) +

(p− α)zp′(z)
c+ α+ (p− α)p(z)

. (3.5)

Now we define the function θ(υ, ν) by taking υ = p(z), ν = zp′(z) then (3.5) become as

θ(υ, ν) = (p− α)υ +
(p− α)ν

c+ α+ (p− α)υ
.

It is easy to see that the function θ(υ, ν) satisfies conditions (i) and (ii) of Lemma 1 in

D =
(
C \

{
c+α
p−α

})
× C. Now we will prove third condition

Re{θ(iυ2, ν1)} = Re

{
(p− α)ν1

c+ α+ (p− α)iυ2

}

=
(p− α)(c + α)ν1

(c+ α)2 + (p− α)2υ2
2

6
−(p− α)(c + α)

(
1 + υ2

2)

2[(c + α)2 + (p− α)2υ2
2 ]
< 0.

The function θ(υ, ν) satisfies conditions of Lemma 1.1. This shows that if
Re{θ(p(z), zp′(z))} > 0 (z ∈ U) then Re p(z) > 0 (z ∈ U), that is if f(z) ∈ S∗[p, λ, q, n, α].
The prove is complete.

Theorem 3.2. Let f ∈ A(p). Suppose also that (λ > 0, 0 6 α < p, p > q, c > −p). If

f(z) ∈ C[p, λ, q, n, α] then Jc,p ∈ C[p, λ, q, n, α].

� f(z) ∈ C[p, λ, q, n, α] ⇒ zf ′(z)
p

∈ S∗[p, λ, q, n, α] ⇒ Jc,p
zf ′(z)
p

∈ S∗[p, λ, q, n, α]

⇔ z

p
Jc,p(f(z))′ ∈ S∗[p, λ, q, n, α] ⇒ Jc,p(f(z)) ∈ C[p, λ, q, n, α].

This completes the proof of Theorem 3.2. B
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ВЛОЖЕНИЯ ДЛЯ НЕКОТОРЫХ ПОДКЛАССОВ
p-ЛИСТНЫХ ФУНКЦИЙ, СВЯЗАННЫХ С ОБОБЩЕННЫМ

ОПЕРАТОРОМ ДИФФЕРЕНЦИРОВАНИЯ

Эльджамал Э. А., Дарус М.

Вводятся новые классы аналитических p-листных функций, определяемые обобщенным оператором
дифференцирования, и изучаются различные вложения этих классов. Рассматриваются некоторые
интересные приложения, включая классы интегральных операторов.

Ключевые слова: p-листная функция, оператор дифференцирования, интегральный оператор,
свойство вложения.


