STRONG INSERTION OF AN α -CONTINUOUS FUNCTION¹

M. Mirmiran

Necessary and sufficient conditions in terms of lower cut sets are given for the strong insertion of an α -continuous function between two comparable real-valued functions.

Mathematics Subject Classification (2000): 54C08, 54C10, 54C50, 26A15, 54C30.

Key words: strong insertion, strong binary relation, preopen set, semi-open set, α -open set, lower cut set.

1. Introduction

The concept of a preopen set in a topological space was introduced by H. H. Corson and E. Michael in 1964 [3]. A subset A of a topological space (X, τ) is called *preopen* or *locally dense* or *nearly open* if $A \subseteq \text{Int}(\text{Cl}(A))$. A set A is called *preclosed* if its complement is preopen or equivalently if $\text{Cl}(\text{Int}(A)) \subseteq A$. The term, preopen, was used for the first time by A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb [11], while the concept of a, locally dense, set was introduced by H. H. Corson and E. Michael [3].

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [10]. A subset A of a topological space (X, τ) is called *semi-open* [10] if $A \subseteq Cl(Int(A))$. A set A is called *semi-closed* if its complement is semi-open or equivalently if $Int(Cl(A)) \subseteq A$.

Recall that a subset A of a topological space (X, τ) is called α -open if A is the difference of an open and a nowhere dense subset of X. A set A is called α -closed if its complement is α -open or equivalently if A is union of a closed and a nowhere dense set.

We have a set is α -open if and only if it is semi-open and preopen.

Recall that a real-valued function f defined on a topological space X is called A-continuous [13] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subset of X. Most of the definitions used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [4, 5].

Hence, a real-valued function f defined on a topological space X is called precontinuous (resp. semi-continuous or α -continuous) if the preimage of every open subset of \mathbb{R} is preopen (resp. semi-open or α -open) subset of X.

Precontinuity was called by V. Pták nearly continuity [14]. Nearly continuity or precontinuity is known also as almost continuity by T. Husain [6]. Precontinuity was studied for real-valued functions on Euclidean space by Blumberg back in 1922 [1].

Results of Katětov [7, 8] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give necessary and sufficient conditions for the strong insertion of an α -continuous function between two comparable real-valued functions.

^{© 2013} Mirmiran M.

¹ This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.

The following definitions are modifications of conditions considered in [9].

A property P defined relative to a real-valued function on a topological space is an α property provided that any constant function has property P and provided that the sum of a function with property P and any α -continuous function also has property P. If P_1 and P_2 are α -property, the following terminology is used:

(i) A space X has the weak α -insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists an α -continuous function h such that $g \leq h \leq f$.

(ii) A space X has the strong α -insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists an α -continuous function h such that $g \leq h \leq f$ and if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x).

In this paper, is given a sufficient condition for the weak α -insertion property. Also for a space with the weak α -insertion property, we give necessary and sufficient conditions for the space to have the strong α -insertion property. Several insertion theorems are obtained as corollaries of these results.

2. The Main Result

Before giving a sufficient condition for insertability of an α -continuous function, the necessary definitions and terminology are stated.

The abbreviations pc, sc and αc are used for precontinuous, semicontinuous and α -continuous, respectively.

Let (X, τ) be a topological space, the family of all α -open, α -closed, semi-open, semiclosed, preopen and preclosed will be denoted by $\alpha O(X, \tau)$, $\alpha C(X, \tau)$, $sO(X, \tau)$, $sC(X, \tau)$, $pO(X, \tau)$ and $pC(X, \tau)$, respectively.

DEFINITION 2.1. Let A be a subset of a topological space (X, τ) . Respectively, we define the α -closure, α -interior, s-closure, s-interior, p-closure and p-interior of a set A, denoted by $\alpha \operatorname{Cl}(A)$, $\alpha \operatorname{Int}(A)$, $s \operatorname{Cl}(A)$, $s \operatorname{Int}(A)$, $p \operatorname{Cl}(A)$ and $p \operatorname{Int}(A)$ as follows:

$$\begin{split} &\alpha\operatorname{Cl}(A) = \cap \{F:F \supseteq A, F \in \alpha C(X,\tau)\},\\ &\alpha\operatorname{Int}(A) = \cup \{O:O \subseteq A, O \in \alpha O(X,\tau)\},\\ &s\operatorname{Cl}(A) = \cap \{F:F \supseteq A, F \in sC(X,\tau)\},\\ &s\operatorname{Int}(A) = \cup \{O:O \subseteq A, O \in sO(X,\tau)\},\\ &p\operatorname{Cl}(A) = \cap \{F:F \supseteq A, F \in pC(X,\tau)\} \text{ and } \end{split}$$

 $p\operatorname{Int}(A) = \bigcup \{ O : O \subseteq A, O \in pO(X, \tau) \}.$

Respectively, we have $\alpha \operatorname{Cl}(A)$, $s \operatorname{Cl}(A)$, $p \operatorname{Cl}(A)$ are α -closed, semi-closed, preclosed and $\alpha \operatorname{Int}(A)$, $s \operatorname{Int}(A)$, $p \operatorname{Int}(A)$ are α -open, semi-open, preopen.

The following first two definitions are modifications of conditions considered in [7, 8].

DEFINITION 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x\bar{\rho}y$ if and only if $y\rho\nu$ implies $x\rho\nu$ and $u\rho x$ implies $u\rho y$ for any u and v in S.

DEFINITION 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

1) If $A_i \rho B_j$ for any $i \in \{1, \ldots, m\}$ and for any $j \in \{1, \ldots, n\}$, then there exists a set C in P(X) such that $A_i \rho C$ and $C \rho B_j$ for any $i \in \{1, \ldots, m\}$ and any $j \in \{1, \ldots, n\}$.

2) If $A \subseteq B$, then $A\bar{\rho}B$.

3) If $A\rho B$, then $\alpha \operatorname{Cl}(A) \subseteq B$ and $A \subseteq \alpha \operatorname{Int}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

DEFINITION 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f,\ell) \subseteq \{x \in X : f(x) \leq \ell\}$ for a real number ℓ , then $A(f,\ell)$ is called a *lower* indefinite cut set in the domain of f at the level ℓ .

We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on a topological space X with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1)\rho A(g,t_2)$, then there exists an α -continuous function h defined on X such that $g \leq h \leq f$.

 \triangleleft Let g and f be real-valued functions defined on X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1)\rho A(g,t_2)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by F(t) = A(f,t) and G(t) = A(g,t). If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then $F(t_1)\bar{\rho}F(t_2)$, $G(t_1)\bar{\rho}G(t_2)$, and $F(t_1)\rho G(t_2)$. By Lemmas 1 and 2 of [8] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1)\rho H(t_2)$, $H(t_1)\rho H(t_2)$ and $H(t_1)\rho G(t_2)$.

For any x in X, let $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$

We first verify that $g \leq h \leq f$. If x is in H(t) then x is in G(t') for any t' > t; since x is in G(t') = A(g, t') implies that $g(x) \leq t'$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f, t') implies that f(x) > t', it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = \alpha \operatorname{Int}(H(t_2)) \setminus \alpha \operatorname{Cl}(H(t_1))$. Hence $h^{-1}(t_1, t_2)$ is an α -open subset of X, i.e., h is an α -continuous function on X. \triangleright

The above proof used the technique of proof of Theorem 1 of [7].

If a space has the strong α -insertion property for (P_1, P_2) , then it has the weak α -insertion property for (P_1, P_2) . The following result uses lower cut sets and gives a necessary and sufficient condition for a space satisfies that weak α -insertion property to satisfy the strong α -insertion property.

Theorem 2.2. Let P_1 and P_2 be α -property and X be a space that satisfies the weak α -insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that $g \leq f$, g has property P_1 and f has property P_2 . The space X has the strong α -insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f - g, 2^{-n})$ and there exists a sequence $\{F_n\}$ of subsets of X such that (i) for each n, F_n and $A(f - g, 2^{-n})$ are completely separated by α -continuous functions, and (i) $\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n$.

 \triangleleft Theorem 3.1, of [12]. \triangleright

Theorem 2.3. Let P_1 and P_2 be α -properties and assume that the space X satisfied the weak α -insertion property for (P_1, P_2) . The space X satisfies the strong α -insertion property for (P_1, P_2) if and only if X satisfies the strong α -insertion property for $(P_1, \alpha c)$ and for $(\alpha c, P_2)$.

 \triangleleft Theorem 3.2, of [12]. \triangleright

3. Applications

Corollary 3.1. If for each pair of disjoint preclosed (resp. semi-closed) sets F_1 , F_2 of X, there exist α -open sets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X has the weak α -insertion property for (pc, pc) (resp. (sc, sc)).

 \triangleleft Let g and f be real-valued functions defined on the X, such that f and g are pc (resp. sc), and $g \leq f$. If a binary relation ρ is defined by $A\rho B$ in case $p \operatorname{Cl}(A) \subseteq p \operatorname{Int}(B)$ (resp. $s \operatorname{Cl}(A) \subseteq s \operatorname{Int}(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \leq t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is a preclosed (resp. semi-closed) set and since $\{x \in X : g(x) < t_2\}$ is a preopen (resp. semi-open) set, it follows that $p \operatorname{Cl}(A(f,t_1)) \subseteq p \operatorname{Int}(A(g,t_2))$ (resp. $s \operatorname{Cl}(A(f,t_1)) \subseteq s \operatorname{Int}(A(g,t_2))$). Hence $t_1 < t_2$ implies that $A(f,t_1)\rho A(g,t_2)$. The proof follows from Theorem 2.1. \triangleright

Corollary 3.2. If for each pair of disjoint preclosed (resp. semi-closed) sets F_1 , F_2 , there exist α -open sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then every precontinuous (resp. semi-continuous) function is α -continuous.

 \triangleleft Let f be a real-valued precontinuous (resp. semi-continuous) function defined on the X. Set g = f, then by Corollary 3.1, there exists an α -continuous function h such that g = h = f. \triangleright

Corollary 3.3. If for each pair of disjoint preclosed (resp. semi-closed) sets F_1 , F_2 of X, there exist α -open sets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X has the strong α -insertion property for (pc, pc) (resp. (sc, sc)).

 \triangleleft Let g and f be real-valued functions defined on the X, such that f and g are pc (resp. sc), and $g \leq f$. Set h = (f + g)/2, thus $g \leq h \leq f$ and if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x). Also, by Corollary 3.2, since g and f are α -continuous functions hence h is an α -continuous function. \triangleright

Corollary 3.4. If for each pair of disjoint subsets F_1 , F_2 of X, such that F_1 is preclosed and F_2 is semi-closed, there exist α -open subsets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X have the weak α -insertion property for (pc, sc) and (sc, pc).

 \triangleleft Let g and f be real-valued functions defined on the X, such that g is pc (resp. sc) and f is sc (resp. pc), with $g \leq f$. If a binary relation ρ is defined by $A\rho B$ in case $s \operatorname{Cl}(A) \subseteq p \operatorname{Int}(B)$ (resp. $p \operatorname{Cl}(A) \subseteq s \operatorname{Int}(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \leq t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is a semi-closed (resp. preclosed) set and since $\{x \in X : g(x) < t_2\}$ is a preopen (resp. semi-open) set, it follows that $s \operatorname{Cl}(A(f,t_1)) \subseteq p \operatorname{Int}(A(g,t_2))$ (resp. $p \operatorname{Cl}(A(f,t_1)) \subseteq s \operatorname{Int}(A(g,t_2))$). Hence $t_1 < t_2$ implies that $A(f,t_1)\rho A(g,t_2)$. The proof follows from Theorem 2.1. \triangleright

Before stating the consequences of Theorems 2.2, and 2.3, we state and prove the necessary lemmas.

Lemma 3.1. The following conditions on the space X are equivalent:

(i) For each pair of disjoint subsets F_1 , F_2 of X, such that F_1 is preclosed and F_2 is semiclosed, there exist α -open subsets G_1 , G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$. (ii) If F is a semi-closed (resp. preclosed) subset of X which is contained in a preopen (resp. semi-open) subset G of X, then there exists an α -open subset H of X such that $F \subseteq H \subseteq \alpha \operatorname{Cl}(H) \subseteq G$.

 \triangleleft (i) \Rightarrow (ii): Suppose that $F \subseteq G$, where F and G are semi-closed (resp. preclosed) and preopen (resp. semi-open) subsets of X, respectively. Hence, G^c is a preclosed (resp. semi-closed) and $F \cap G^c = \emptyset$.

By (i) there exists two disjoint α -open subsets G_1 , G_2 of X s.t., $F \subseteq G_1$ and $G^c \subseteq G_2$. But $G^c \subseteq G_2 \Rightarrow G_2^c \subseteq G$, and $G_1 \cap G_2 = \emptyset \Rightarrow G_1 \subseteq G_2^c$ hence $F \subseteq G_1 \subseteq G_2^c \subseteq G$ and since G_2^c is an α -closed set containing G_1 we conclude that $\alpha \operatorname{Cl}(G_1) \subseteq G_2^c$, i.e.,

$$F \subseteq G_1 \subseteq \alpha \operatorname{Cl}(G_1) \subseteq G.$$

By setting $H = G_1$, condition (ii) holds.

(ii) \Rightarrow (i): Suppose that F_1, F_2 are two disjoint subsets of X, such that F_1 is preclosed and F_2 is semi-closed.

This implies that $F_2 \subseteq F_1^c$ and F_1^c is a preopen subset of X. Hence by (ii) there exists an α -open set H s.t., $F_2 \subseteq H \subseteq \alpha \operatorname{Cl}(H) \subseteq F_1^c$. But

$$H \subseteq \alpha \operatorname{Cl}(H) \Rightarrow H \cap (\alpha \operatorname{Cl}(H))^c = \emptyset$$

and

$$\alpha \operatorname{Cl}(H) \subseteq F_1^c \Rightarrow F_1 \subseteq (\alpha \operatorname{Cl}(H))^c.$$

Furthermore, $(\alpha \operatorname{Cl}(H))^c$ is an α -open set of X. Hence $F_2 \subseteq H, F_1 \subseteq (\alpha \operatorname{Cl}(H))^c$ and $H \cap (\alpha \operatorname{Cl}(H))^c = \emptyset$. This means that condition (i) holds. \triangleright

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets F_1 , F_2 of X, where F_1 is preclosed and F_2 is semi-closed, can separate by α -open subsets of X then there exists an α -open continuous function $h: X \to [0,1]$ s.t., $h(F_1) = \{0\}$ and $h(F_2) = \{1\}$.

 \triangleleft Suppose F_1 and F_2 are two disjoint subsets of X, where F_1 is preclosed and F_2 is semiclosed. Since $F_1 \cap F_2 = \emptyset$, hence $F_2 \subseteq F_1^c$. In particular, since F_1^c is a preopen subset of Xcontaining semi-closed subset F_2 of X, by Lemma 3.1, there exists an α -open subset $H_{1/2}$ of X s.t.,

$$F_2 \subseteq H_{1/2} \subseteq \alpha \operatorname{Cl}(H_{1/2}) \subseteq F_1^c.$$

Note that $H_{1/2}$ is also a preopen subset of X and contains F_2 , and F_1^c is a preopen subset of X and contains a semi-closed subset $\alpha \operatorname{Cl}(H_{1/2})$ of X. Hence, by Lemma 3.1, there exists α -open subsets $H_{1/4}$ and $H_{3/4}$ s.t.,

$$F_2 \subseteq H_{1/4} \subseteq \alpha \operatorname{Cl}(H_{1/4}) \subseteq H_{1/2} \subseteq \alpha \operatorname{Cl}(H_{1/2}) \subseteq H_{3/4} \subseteq \alpha \operatorname{Cl}(H_{3/4}) \subseteq F_1^c$$

By continuing this method for every $t \in D$, where $D \subseteq [0,1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain α -open subsets H_t of X with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by $h(x) = \inf\{t : x \in H_t\}$ for $x \notin F_1$ and h(x) = 1 for $x \in F_1$.

Note that for every $x \in X$, $0 \leq h(x) \leq 1$, i.e., h maps X into [0, 1]. Also, we note that for any $t \in D$, $F_2 \subseteq H_t$; hence $h(F_2) = \{0\}$. Furthermore, by definition, $h(F_1) = \{1\}$. It remains only to prove that h is an α -continuous function on X. For every $\beta \in \mathbb{R}$, we have if $\beta \leq 0$ then $\{x \in X : h(x) < \beta\} = \emptyset$ and if $0 < \beta$ then $\{x \in X : h(x) < \beta\} = \bigcup \{H_t : t < \beta\}$, hence, they are α -open subsets of X. Similarly, if $\beta < 0$ then $\{x \in X : h(x) > \beta\} = X$ and if $0 \leq \beta$ then $\{x \in X : h(x) > \beta\} = \bigcup \{(\alpha \operatorname{Cl}(H_t))^c : t > \beta\}$ hence, every of them is an α -open subset of X. Consequently h is an α -continuous function. \triangleright **Lemma 3.3.** Suppose that X is a topological space. If each pair of disjoint subsets F_1 , F_2 of X, where F_1 is preclosed and F_2 is semi-closed, can separate by α -open subsets of X, and F_1 (resp. F_2) is a countable intersection of α -open subsets of X, then there exists an α -continuous function $h: X \to [0,1]$ s.t., $h^{-1}(0) = F_1$ (resp. $h^{-1}(0) = F_2$) and $h(F_2) = \{1\}$ (resp. $h(F_1) = \{1\}$).

⊲ Suppose that $F_1 = \bigcap_{n=1}^{\infty} G_n$ (resp. $F_2 = \bigcap_{n=1}^{\infty} G_n$), where G_n is an α-open subset of X. We can suppose that $G_n \cap F_2 = \emptyset$ (resp. $G_n \cap F_1 = \emptyset$), otherwise we can substitute G_n by $G_n \setminus F_2$ (resp. $G_n \setminus F_1$). By Lemma 3.2, for every $n \in \mathbb{N}$, there exists an α-continuous function $h_n : X \to [0,1]$ s.t., $h_n(F_1) = \{0\}$ (resp. $h_n(F_2) = \{0\}$) and $h_n(X \setminus G_n) = \{1\}$. We set $h(x) = \sum_{n=1}^{\infty} 2^{-n} h_n(x)$.

Since the above series is uniformly convergent, it follows that h is an α -continuous function from X to [0,1]. Since for every $n \in \mathbb{N}$, $F_2 \subseteq X \setminus G_n$ (resp. $F_1 \subseteq X \setminus G_n$), therefore $h_n(F_2) = \{1\}$ (resp. $h_n(F_1) = \{1\}$) and consequently $h(F_2) = \{1\}$ (resp. $h(F_1) = \{1\}$). Since $h_n(F_1) = \{0\}$ (resp. $h_n(F_2) = \{0\}$), hence $h(F_1) = \{0\}$ (resp. $h(F_2) = \{0\}$). It suffices to show that if $x \notin F_1$ (resp. $x \notin F_2$), then $h(x) \neq 0$.

Now if $x \notin F_1$ (resp. $x \notin F_2$), since $F_1 = \bigcap_{n=1}^{\infty} G_n$ (resp. $F_2 = \bigcap_{n=1}^{\infty} G_n$), therefore there exists $n_0 \in \mathbb{N}$ s.t., $x \notin G_{n_0}$, hence $h_{n_0}(x) = 1$, i.e., h(x) > 0. Therefore $h^{-1}(0) = F_1$ (resp. $h^{-1}(0) = F_2$). \triangleright

Lemma 3.4. Suppose that X is a topological space such that every two disjoint semiclosed and preclosed subsets of X can be separated by α -open subsets of X. The following conditions are equivalent:

(i) For every two disjoint subsets F_1 and F_2 of X, where F_1 is preclosed and F_2 is semiclosed, there exists an α -continuous function $h: X \to [0,1]$ s.t., $h^{-1}(0) = F_1$ (resp. $h^{-1}(0) = F_2$) and $h^{-1}(1) = F_2$ (resp. $h^{-1}(1) = F_1$).

(ii) Every preclosed (resp. semi-closed) subset of X is a countable intersection of α -open subsets of X.

(iii) Every preopen (resp. semi-open) subset of X is a countable union of α -closed subsets of X.

 \triangleleft (i) \Rightarrow (ii). Suppose that F is a preclosed (resp. semi-closed) subset of X. Since \varnothing is a semi-closed (resp. preclosed) subset of X, by (i) there exists an α -continuous function $h: X \to [0,1]$ s.t., $h^{-1}(0) = F$. Set $G_n = \{x \in X : h(x) < \frac{1}{n}\}$. Then for every $n \in \mathbb{N}$, G_n is an α -open subset of X and $\bigcap_{n=1}^{\infty} G_n = \{x \in X : h(x) = 0\} = F$.

(ii) \Rightarrow (i). Suppose that F_1 and F_2 are two disjoint subsets of X, where F_1 is preclosed and F_2 is semi-closed. By Lemma 3.3, there exists an α -continuous function $f: X \to [0,1]$ s.t., $f^{-1}(0) = F_1$ and $f(F_2) = \{1\}$. Set $G = \{x \in X : f(x) < \frac{1}{2}\}$, $F = \{x \in X : f(x) = \frac{1}{2}\}$, and $H = \{x \in X : f(x) > \frac{1}{2}\}$. Then $G \cup F$ and $H \cup F$ are two α -closed subsets of X and $(G \cup F) \cap F_2 = \emptyset$. By Lemma 3.3, there exists an α -continuous function $g: X \to [\frac{1}{2}, 1]$ s.t., $g^{-1}(1) = F_2$ and $g(G \cup F) = \{\frac{1}{2}\}$. Define h by h(x) = f(x) for $x \in G \cup F$, and h(x) = g(x) for $x \in H \cup F$. Then h is well-defined and an α -continuous function, since $(G \cup F) \cap (H \cup F) = F$ and for every $x \in F$ we have $f(x) = g(x) = \frac{1}{2}$. Furthermore, $(G \cup F) \cup (H \cup F) = X$, hence h defined on X and maps to [0, 1]. Also, we have $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$.

(ii) \Leftrightarrow (iii): By De Morgan law and noting that the complement of every α -open subset of X is an α -closed subset of X and complement of every α -closed subset of X is an α -open subset of X, the equivalence is hold. \triangleright

Corollary 3.5. If for every two disjoint subsets F_1 and F_2 of X, where F_1 is preclosed (resp. semi-closed) and F_2 is semi-closed (resp. preclosed), there exists an α -continuous

function $h: X \to [0,1]$ s.t., $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$ then X has the strong α -insertion property for (pc, sc) (resp. (sc, pc)).

⊲ Since for every two disjoint subsets F_1 and F_2 of X, where F_1 is preclosed (resp. semi-closed) and F_2 is semi-closed (resp. preclosed), there exists an α-continuous function $h: X \to [0,1]$ s.t., $h^{-1}(0) = F_1$ and $h^{-1}(1) = F_2$, define $G_1 = \{x \in X : h(x) < \frac{1}{2}\}$ and $G_2 = \{x \in X : h(x) > \frac{1}{2}\}$. Then G_1 and G_2 are two disjoint α-open subsets of X that contain F_1 and F_2 , respectively. Hence by Corollary 3.4, X has the weak α-insertion property for (pc, sc) and (sc, pc). Now, assume that g and f are functions on X such that $g \leq f$, g is pc (resp. sc) and f is αc . Since f - g is pc (resp. sc), therefore the lower cut set $A(f - g, 2^{-n}) = \{x \in X : (f - g)(x) \leq 2^{-n}\}$ is a preclosed (resp. semi-closed) subset of X. By Lemma 3.4, we can choose a sequence $\{F_n\}$ of α-closed subsets of X s.t., $\{x \in X : (f - g)(x) > 0\} = \bigcup_{n=1}^{\infty} F_n$ and for every $n \in \mathbb{N}$, F_n and $A(f - g, 2^{-n})$ are disjoint subsets of X. By Lemma 3.2, F_n and $A(f - g, 2^{-n})$ can be completely separated by α -continuous functions. Hence by Theorem 2.2, X has the strong α -insertion property for $(pc, \alpha c)$ (resp. $(sc, \alpha c)$).

By an analogous argument, we can prove that X has the strong α -insertion property for $(\alpha c, sc)$ (resp. $(\alpha c, pc)$). Hence, by Theorem 2.3, X has the strong α -insertion property for (pc, sc) (resp. (sc, pc)). \triangleright

References

- 1. Blumberg H. New properties of all functions // Trans. Amer. Math. Soc.-1922.--Vol. 24.--P. 113-128.
- 2. Brooks F. Indefinite cut sets for real functions // Amer. Math. Monthly. —1971.—Vol. 78.—P. 1007–1010.
- Corson H. H., Michael E. Metrizability of certain countable unions // Illinois J. Math.—1964.—Vol. 8.– P. 351–360.
- Dontchev J. The characterization of some peculiar topological space via α- and β-sets // Acta Math. Hungar.—1995.—Vol. 69, № 1–2.—P. 67–71.
- Ganster M., Reilly I. A decomposition of continuity // Acta Math. Hungar.—1990.—Vol. 56, № 3–4.— P. 299–301.
- 6. Husain T. Almost continuous mappings // Prace Mat.—1966.—Vol. 10.—P. 1–7.
- 7. Katětov M. On real-valued functions in topological spaces // Fund. Math.-1951.-Vol. 38.-P. 85-91.
- Katětov M. On real-valued functions in topological spaces // Fund. Math.—1953.—Vol. 40.—P. 203– 205.—(Correction).
- 9. Lane E. Insertion of a continuous function // Pacific J. Math.-1976.-Vol. 66.-P. 181-190.
- Levine N. Semi-open sets and semi-continuity in topological space // Amer. Math. Monthly.—1963.— Vol. 70.—P. 36–41.
- Mashhour A. S., Abd El-Monsef M. E., El-Deeb S. N. On pre-continuous and weak pre-continuous mappings // Proc. Math. Phys. Soc. Egypt.—1982.—Vol. 53.—P. 47–53.
- 12. Mirmiran M. Insertion of a function belonging to a certain subclass of \mathbb{R}^X // Bull. Iran. Math. Soc.-2002.-Vol. 28, Nº 2.-P. 19-27.
- 13. Przemski M. A decomposition of continuity and α -continuity // Acta Math. Hungar.—1993.—Vol. 61, Nº 1–2.—P. 93–98.
- 14. Pták V. Completeness and open mapping theorem // Bull. Soc. Math. France.—1958.—Vol. 86.—P. 41–74.

Received July 19, 2011

MIRMIRAN MAJID Department of Mathematics, University of Isfahan Isfahan 81746-73441, Iran E-mail: mirmir@sci.ui.ac.ir

СТРОГОЕ ВЛОЖЕНИЕ α-НЕПРЕРЫВНЫХ ФУНКЦИЙ

Мирмиран М.

В терминах верхнего сечения даны необходимые и достаточные условия для строгой вложимости α -непрерывных функций между двумя сравнимыми вещественнозначными функциями.

Ключевые слова: строгое вложение, строгое бинарное отношение, предоткрытое множество, полуоткрытое множество, α -открытое множество, верхнее сечение.