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1. Introduction

In this paper we consider some properties of bounded linear operators on injective Banach
lattices using a Boolean-valued transfer principle from AL-spaces to injective Banach lattices
stated in Kusraev [1]. In Section 2 we collect some Boolean valued representation results
for Banach lattices and regular operators (Theorems 2.2, 2.4, and 2.5). In Section 3 we
present a Daugavet type equation (Theorem 3.5 and Corollary 3.9) and a Daugavet type
inequality (Theorem 3.8) for operators on injective Banach lattices. Section 4 deals with the
problem when the spaces of regular (Theorem 4.4), cyclically compact (Theorem 4.7), and
cone B-summing (Theorem 4.10) operators are injective Banach lattice.

Recall some basic definitions. A real Banach lattice X is said to be injective if, for
every Banach lattice Y, every closed vector sublattice Yy C Y, and every positive linear
operator 1 : Yy — X there exists a positive linear extension 7" : Y — X of T with
IToll = ||T]|. A Dedekind complete AM-space with unit (Abramovich [2] and Lotz [3]) as
well as an AL-space (Lotz [3]) is an injective Banach lattice, see Meyer—Nieberg [4].

We denote by P(X) the Boolean algebra of all band projections on a vector lattice X.
A crucial role in the structure theory of injective Banach lattice plays the concept of
M-projection. A band projection 7 in a Banach lattice X is called an M-projection if
lz|| = max{||zz|,|r+z||} for all x € X, where 7t := Iy — 7. The set M(X) of all
M-projections in X forms a Boolean subalgebra of P(X). Haydon [5] proved that an in-
jective Banach lattice X is an AL-space if and only if M(X) = {0, Ix}.

In what follows X and Y denote Banach lattices, while Z(X,Y) and .£"(X,Y’) stand
respectively for the spaces of bounded and regular operators from X into Y and ||T||, stands
for the regular norm of 7' € £"(X,Y), i.e., ||T']|; := |||T]||. Throughout the sequel B is
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a complete Boolean algebra with unit 1 and zero O, while A:= A(B) is a Dedekind complete
AM-space with unit such that B ~ P(A); in this event B and P(A) are identified with 1 taken
as the unit both in B and P(A). A partition of unity in B is a family (b¢)¢ez C B such that
Veezbe = 1 and b A by, = O whenever § # 7.

For the theory of Banach lattices and positive operators we refer to the books Meyer—
Nieberg [4] and Aliprantic and Burkinshaw [6]. The needed information on the theory of
Boolean-valued models is briefly presented in Kusraev [7, Chapter 9] and Kusraev and Ku-
tateladze [8, Chapter 1]; details may be found in Bell [9], Kusraev and Kutateladze [10],
Takeuti and Zaring [11]. We let := denote the assignment by definition, while N, @, and R
symbolize the naturals, the rationals, and the reals.

2. Boolean Valued Representation

In this section we present some Boolean valued representation results needed in the sequel.
Assume that X is a Banach lattice and 4 is a complete subalgebra of a complete Boolean
algebra B(X) consisting of projection bands and denote by B the corresponding Boolean
algebra of band projections. We will identify P(A) and B.

DEFINITION 2.1. If (b¢)¢ez is a partition of unity in B and (x¢)¢ez is a family in X, then
there is at most one element x € X with bexe = bex for all { € E. This element z, if existing,
is called the mizing of (z¢) by (b¢). Clearly, z = 0-3 ¢z bewe. A Banach lattice X is said to
be B-cyclic or B-complete if the mixing of every family in the unit ball U(X) of X by each
partition of unity in B (with the same index set) exists in U(X).

A Banach lattice (X, ||-]|) is B-cyclic with respect to a complete Boolean algebra B of band
projections on X if and only if there exists a A(B)-valued norm |-| on X such that (X, [-]) is
a Banach-Kantorovich space, |z| < |y| implies || < |y| for all z,y € X, and ||z|| = |||z]|| o
(x € X), see Kusraev and Kutateladze [8, Theorems 5.8.11 and 5.9.1].

Theorem 2.2. A restricted descent of a Banach lattice from the model V®) is a B-cyclic
Banach lattice. Conversely, if X is a B-cyclic Banach lattice, then in the model V® there
exists up to the isometric isomorphism a unique Banach lattice 2~ whose restricted descent
2| is isometrically B-isomorphic to X. Moreover, B = M(X) if and only if [there is no
M-projection in Z other than 0 and Iy] = 1.

< See Kusraev and Kutateladze [8, Theorem 5.9.1]. >

DEFINITION 2.3. The elements .2~ € V®) in Theorem 2.2 and .7 € V® in Theorem 2.4
below are said to be the Boolean valued representations of X and T, respectively.

Denote by £ (X,Y) the space of all regular B-linear operators from X to Y equipped
with the regular norm ||T|, := inf{||S| : S € L(X,Y), £T < S}. Let 2 and % be
the Boolean valued representations of B-cyclic Banach lattices X and Y, respectively, while
L X, %) stands for the space of all regular operators from 2" to % with the regular norm
within V(). The following result states that .Z7 (2", %) is the Boolean valued representation
of Z5(X,Y).

Theorem 2.4. Assume that X and Y are B-cyclic Banach lattices, while 2~ and % are
their respective Boolean valued representation. The space £ (X,Y') is order B-isometric to
the bounded descent L" (2, %)\ of X" (2 ,%'). The isomorphism is set up by assigning to
any T € £ (X,Y) the element T := T7 of V® is uniquely determined from the formulas
17 Z —>%]=1land [ Tex=Tz]=1 (z € X).

<1 According to Theorem 2.2 we may assume without loss of generality that X and Y
are the bounded descents of some Banach lattices 2" and %. Moreover, Z(X,Y) and
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L(Z,%)| are B-isometric by [7, Theorem 8.3.6]. Since T'(X;)t = TH(X+1) = T(Z24),
it follows that T'(X;) C Y, if and only if [7(2%) C #;] = 1. This means that the
bijection T <+ 7 = T preserves positivity and hence is an order B-isomorphism between
L5 (X,Y) and ZL7(Z, % ). Since for S € ZE(X,Y) and . ;= ST the relations £7° < S
and [£7 < ] = 1 are equivalent, we have [|.7 |, = |T|,] = 1, where |T|, = inf{|S] :
S e Z(X)Y), £T < S} and [S]:= sup{|Sz| : |z| < 1}. Thus, it remains to prove that
Il = 1T, oo (T € ZE(X,Y)).

If £7 < S then |||IT]]|eo < [[IS]loc = |IS]| and hence | T||» = |IT],]lco- To prove the
reverse inequality take an arbitrary 0 < ¢ € R and choose a partition of unity (7¢)ecz in
B and a family (S¢)eez in L5 (X,Y) such that S¢ > £T and m¢|Se| < (1 4 €)|T, for all
¢ € E. Define an operator S € £ (X,Y) by Sx:= mix¢cz m¢Sex (¢ € X), where the mixing
exists in Y, since [S¢x| < (1 + €)|T|,|x| and hence (S¢x) is norm bounded in Y. Moreover,
St = Zg meSew in the sense of A-valued norm on Y. Therefore, S > £7 and |S| < (14¢)|T],.,
whence [T, < 8] = [181lleo < (1+&)[IT], oo- &

Theorem 2.5. Let X be a B-cyclic Banach lattice and let 2" be its Boolean valued
representation in V® . Then the following hold:

(1) V®) = «2° is Dedekind complete” if and only if X is Dedekind complete.
(2) V®) £ 2 is injective” if and only if X is injective.

(3) V®) £ “2 is an AM-space” if and only if X is an AM-space.

(4) V®) = “2" is an AL-space” if and only if X is injective and B ~ M(X).
< See Kusraev and Kutateladze [8, Theorems 5.9.6 (1) and 5.12.1]. >

REMARK 2.6. As was mentioned in the introduction, Boolean valued analysis approach
plays a key role in the proofs below. An alternative approach relies upon Gutman’s theory
of bundle representation of lattice normed spaces developed in [12, 13].

3. The Daugavet Equation in Injective Banach Latices

DEFINITION 3.1. If X is a real Banach space, a bounded linear operator T': X — X is
said to satisfy the Daugavet equation if ||[Ix + T =1+ |T|.

Theorem 3.2. If T is a bounded operator on an AL-space X then either T or —T
satisfies the Daugavet equation.

< The proof and the history of this theorem see in Abramovich and Aliprantis [14, The-
orem 11.23], see also Abramovich [15] and Schmidt [16]. >

DEFINITION 3.3. Fix a complete Boolean algebra B of band projection in X, i.e., B is
a complete subalgebra of P(X). A bounded linear operator 7' : X — X is said to satisfiy
the Daugavet equation B-uniformly if ||w + Tx|| = 1+ ||T'n|| for all nonzero 7 € B. Say that
p € P(X) is nonzero over B, whenever mp # 0 for all nonzero 7 € B.

Lemma 3.4. Let A be a normed lattice with the projection property, X be a decom-
posable lattice normed space over A and ||z||:= |||x]]|c (x € X). Then for 0 < p € R and

1

z,y € X the inequality |z| > (1 + |y|p)% holds if and only if ||rx| > (1 + ||7y||?)? for all
0#meP(A).
< Prove that (Vo € P(A)) ||7z|| = (14 Hﬂ'pr)% implies |z]| > (]l+|y|p)%. If the inequality

1

|z] = (1 4 |y[”)» is not true then there exist a nonzero my € P(A) and 0 < £ € R such that
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(I+e)molz] < mo(1 +|y|p)%. Notice that || is P(A)-homogeneous, i.e., w|z| = |rz| and hence
1 1
(1 + [ylP)» = (71 + |7y|P)? for all x € X and 7 € P(A), see [8, 5.8.3]. It follows that

1 1
Imoxl < (1 + €)l[mozll = [[(1 + e)molz] oo < |[(mol + lmoyl?) ||, = (1 + [lmoyl")?,

a contradiction. The converse implication is immediate from the relations

3=

. D>

= (71 + |mylP) 7 || (14 1) 7 = (1 + Il %)

3=

|72| = 7|z] > 7 (1 +|yl”)

Theorem 3.5. Let X be an injective Banach lattice and an operator T € £ (X) com-
mutes with all M-projections. Then there exist pair-wise disjoint M-projections mq, 71, and
w9 In X such that wy + m1 + mo = Ix and the operators mp o T + mg o1 — my o T and
moT —myoT — mgoT satisfy the Daugavet equation M(X)-uniformly. Moreover, for any
nonzero M-projections py < m (k = 1,2) the operators —py o T and py o T fail to satisfy the
Daugavet equation.

A Let 27,7 € V® be the Boolean valued representations of X and T, respectively. By
Theorem 3.3 [2 is an AL-space and 7 € Z(Z")] = 1. Let the formula ¢(T) formalize the
sentence ‘T satisfies the Daugavet equation’ and put 71 = [(7)], 72 = [¢v(=TF)], o =
1079, and m; = w;—mg. Clearly, g, 1, and 7o are pair-wise disjoint. Boolean valued transfer
principle together with Theorem 3.1 imply that [either 7 or — satisfies the Daugavet
equation] = 1. It follows from the Transfer Principle that 71 V 72 = [¢(7) V(=T )] = 1,
whence m + m9 + m2 = 1. Denote by . the mixing of (7,7 ,—7) by (71,7, m2), i. €.
mo+m <[ =T]and m < [ =—-T]. If S:= .S then S:=moT +mpoT —ma0T.
By applying [7, A.5(6)] we have mo + m1 < [W(T)] A [ = T] < [%(¥)] and 72 <
[W(=N[S = —T] < [#(S)] which imply [#(.)] = 1. Since [||.77|| = |S|] = 1, we have
|I+S] = 1+]S]| and taking into account Lemma 3.4 and the easy relation ||14+\|lc = 1+||A||co
with X\ € A yields |7 + S7|| > 1+ ||S7|| and hence the required equality |7+ S|| = 1+ ||S7||
for all nonzero m € B. The operator my o T — mg o T — w9 o T" is handled similarly. >

We now consider Daugavet type inequalities for regular operators.

For 1 < p € R and arbitrary s,t € R we denote t?:= sgn(t)|t|P and o, (s,t):= (s'/P4+t1/P)P,
where 1/p:= p~!. In a vector lattice X, we introduce new vector operations @ and #, while
the original ordering < remain unchanged:

@Y= op(x,y):= (ml/p+yl/p)p, txz:=t’r (r,y€ X; teR).

Then X ®):= (X, ®, x, <) is again a vector lattice. Moreover, (X®)_||-||,,) with ||z||,:= |lz||*/?
is a Banach lattice called the p-converification of X, see Lindenstrauss and Tzafriri [17, pp. 53,
54]. Observe that P(X®)) = P(X) and M(X®) = M(X). Given a Banach lattice 2" € V(B
and 1 < p € R, we denote by 2 ® := 2°®") the p*-convexification of 2~ within V®).
Moreover, if |-| and |-], are the respective descents (see [8, 1.5.6]) of | - || and || - ||, then
||, = |2|"/? for all = € X.

Theorem 3.6. Let 2" be an AL-space with a weak order unit and 7 be a regular linear
operator on ' P), 1 < p € R. Then T L I, if and only if [|p+ Tp|, = (1 + ||9p]\$)% for
all nonzero band projections p in 2" ).

< This is a reformulation of the main result (Theorem 9) in Schep [18], since in the case
of a function space 2~ we have 2°®) = {f: |fIP€ Z}. >

To perform the Boolean valued interpretation of Theorem 3.6 we need an auxiliary fact.
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Lemma 3.7. Let 2 be a Banach lattice within V® . Then for each 1 < p € R we have

(2P = (2.

< See Kusraev [19, Lemma 4]. >

Theorem 3.8. Let X be an injective Banach lattice with a weak order unit and an
operator T € £"(X (p)) commutes with M-projections on X (). The following are equivalent:

(1) T L Ivq.
(2) ||rp£rTp|, > (1+ H7erH£)% with 0 # m € M(X) and p € P(X) nonzero over M(X).

1

3) lp£Tpllr = (1+ ||Tp||F)? for all nonzero p € P(X).

< Let again 2" € V® stand for the Boolean valued representation of X. Then 2 is
an AL-space with a weak order unit within V®) by Theorem 2.5, while X ® = (Z (p))ll by
Lemma 3.7. According to Theorem 2.4 there exists a regular operator .7 € £ (2 #)) such
that T = 7). By Boolean valued transfer principle, Schep’s result (Theorem 3.6) is valid

AN
within V® i.e., [7 L I,u] = 1 if and only if [||p £ Tpll, = (1 + | TpllF)/?" for all
nonzero band projections p on 2] = 1. Clearly, [p # 0] = 1 if and only if mp # 0 for
all nonzero m € M(X). Observe also that |T'|, = ||T|| and thus |||, = [||T],|lcc, since an
injective Banach lattice is order complete, see [8, Corollary 5.10.7]. It follows that T" L I y(,)
1
if and only if |p+Tp|, > (]l + |Tp|£) » for each p € P(X) nonzero over M(X). By Lemma 3.4
the last inequality is equivalent to ||7p + 7#Tp||, > (1 + H7er||$)% for all nonzero m € M(X)
and p € P(X) nonzero over M(X). Thus, (1) <= (2), while (3) = (2) is trivial. To prove
(2) = (3), take arbitrary nonzero p € P(X) and put 7y := sup{m € M(X) : mp = 0},
p:= p+mo, and 7:= mz-. Then p is nonzero over M(X) and 75 = p. Now, making use of (2),
1 1

we deduce [|p = Tpl, = |75 £ 7Tpl > (1+ [7TIE)? = (1 + |Tpl2)7. o>

The following corollary generalizes Theorem 1 from Shvidkoy [21].

Corollary 3.9. Assume that X is an injective Banach lattice with a weak order unit and
an operator T € £ (X) commutes with all M-projections on X. Then T | Ix if and only
if T satisfy the Daugavet equation P(X )-uniformly.

< This is immediate from Theorem 3.8 and Proposition 2 in Shvidkoy [21]. >

4. Injective Banach Latices of Operators

We consider now under which conditions the space of regular operators between Banach
lattices is an injective Banach lattice. First, we state results obtained by Wickstead in [22].

Theorem 4.1. If 2 and % are Banach lattices, neither of which is the zero space,
with % Dedekind complete then X" (%2 ,%') is an AL-space under the regular norm if and
only if 2" is an AM-space and % is an AL-space.

< See Wickstead [22, Theorem 2.1]. >

Theorem 4.2. If % is a nonzero Dedekind complete Banach lattices then L™ (%, %) is
an AM -space under the regular norm for every AL-space 2 if and only if % is an AM -space
with a Fatou norm.

< See Wickstead [22, Theorem 2.3]. >

Denote by " (2, %) the linear span of positive compact operators from 2" to # en-
dowed with the k-norm defined as ||T'||x:= inf{||S||: £T < S € (2, %)}, see [22].
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Theorem 4.3. If 2" and % are nonzero Banach lattices, then %" (Z , %) is an AL-space
under the k-norm if and only if Z is an AM-space and % is an AL-space.

< See Wickstead [22, Theorem 2.5 (i)]. >

By Boolean valued transfer principle the above three theorems are true within each
Boolean valued model. The proofs below are carried out by externalization of these in-
ternal facts with 2", % and .7 standing for Boolean valued representations of X, Y and T,
respectively.

Theorem 4.4. Let X and Y be B-cyclic Banach lattices with Y Dedekind complete.
Then £ (X,Y) is an injective Banach lattice under the regular norm with B ~ M(.Z§ (X,Y))
if and only if X is an AM-space and Y is an injective Banach lattice with B ~ M(Y").

<1 This a Boolean valued interpretation of Theorem 4.1. According to Theorems 2.4 and
2.5(4) Z4(X,Y) is an injective Banach lattice under the regular norm with B(.Z5(X,Y))
isomorphic to B if and only if Z7 (2", %) is an AL-space under the regular norm within V®).
Theorem 4.1 (applicable by Theorem 2.5 (1)) tells us that the latter is equivalent to saying that
Z is an AM-space and % is an AL-space. It remains to refer again to Theorem 2.5 (3,4). >

Theorem 4.5. Let Y be a nonzero B-cyclic Dedekind complete Banach lattices. Then
L3 (X,Y) is an AM-space under the regular norm with M(Z5 (X,Y')) ~ B for every injective
Banach lattice X with B = M(X) if and only if Y is an AM-space with a Fatou norm.

<1 The proof is similar to that of Theorem 4.4: Theorem 4.2 is true within V® and hence
L(Z, %) is an AM-space under the regular norm for every AL-space 2 if and only if %
is an AM-space with a Fatou norm. Moreover, Y has the Fatou norm if and only if [# has
the Fatou norm] = 1, see [8, Theorem 5.9.6 (2)]. Now, combining Theorems 2.4 and 2.5
completes the proof. >

DEFINITION 4.6. Denote by Prt(B) (respectively, Prt,(B)) the set of all partitions (res-
pectively, countable partitions) of unity in B. A set U in X is said to be mix-complete if, for
all (m¢)ecz € Prt(B) and (ug)eez C U, there is u € U such that u = mix¢ez meug. Suppose
that X is a B-cyclic Banach lattice, (z,)neny C X, and x € X. Say that a sequence (2, )nen B-
approzimates x if, for each k € N, we have inf{sup,,~ [|7n(zn—2)| : (7n)nzk € Prts(B)} = 0.
Call a set K C X mix-compact if K is mix-complete and for every sequence (x,)neny C K
there is € K such that (z,)nen B-approximates z. Observe that if ||z| = |||z]||~ (z € X)
with a A(B)-valued norm |-|, then a sequence (x,),en in X B-approximates z if and only if
inf,,> |z, — 2| for all £ € N. An operator with values in a B-cyclic Banach lattice is called
cyclically compact if (or mix-compact) the image of any bounded subset is contained in a
cyclically compact set.

It is clear that in case £ = R mix-compactness is equivalent to compactness in the norm
topology. Note also that the concept of mix-compactness in Gutman and Lisovskaya [20]
coincides with that of cyclically compactness introduced by Kusraev [7], see [20, Theorem 3.4]
and [8, Proposition 2.12.C.5].

Given B-cyclic Banach lattices X and Y, denote by 3 (X, Y’) the linear span of positive
B-linear cyclically compact operators from X to Y, see [7, 8.5.5]. This is a Banach lattice
under the k-norm defined as

| T|lp:= inf{||S] : £T < S € 5 (X,Y)}.

Note that #7(X,Y):= 5 (X,Y), whenever B = {0, 1}, cp. [22].
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Theorem 4.7. Let X and Y be B-cyclic Banach lattices. Then J#3 (X,Y') is an injective
Banach lattice under the k-norm with M(.Z(X,Y)) ~ B if and only if X is an AM-space
and Y is an injective Banach lattice with M(Y") ~ B.

<1 The proof runs along the lines of the proof of Theorem 4.4. We have only to observe
that an operator T' € £ (X,Y") is mix-compact if and only if [.7 = T'1 is a compact linear
operator from 2" into % ] = 1, see [7, Proposition 8.5.5(1)]. Thus the B-isometry between
LE(X,Y) and £7(Z7,%)| induces a B-isometry between J#5 (X,Y) and #" (2, %)|. >

DEFINITION 4.8. Let X be a Banach lattice and Y be a B-cyclic Banach space. Denote
by Phn(X) the collection of all finite subsets of X. For every T € Z(X,Y) define

<1},

n
DLl
i=1

An operator T' € Z(X,Y) is said to be cone B-summing if o(T) < oco. Thus, T is cone
B-summing if and only if there exists a positive constant C' such that for any finite collection
x1,...,x, € X there is a countable partition of unity (7)ren in B with

n
DLzl
i=1

moreover, in this event o(7T") = inf{C}. Denote by ./5(X,Y) the set of all cone B-summing
operators. The class .#g(X,Y) was introduced in Kusraev [23, Definition 7.1], see also Kus-
racv and Kutateladze [8, 5.13.1]. Observe that if B = {0, [y} then . (X,Y) := (X,Y)
is the space of cone absolutely summing operators, see Schaefer [24, Ch. 4, §3, Proposi-
tion 3.3 (d)] or (which is the same) 1-concave operators, see Diestel, Jarchow, and Tonge
[25, p. 330]. Cone absolutely summing operators were introduced by Levin [26] and later
independently by Schlotterbeck, see [24, Ch. 4].

Theorem 4.9. Let 2" and % be nonzero Banach lattices. The following are equivalent:

(1) A(Z,%) is an AL-space.

(2) Z is an AM-space and % is an AL-space.

< This result was obtained by Schlotterbeck, see Schaefer [24, Ch. 4, Proposition 4.5]. >

Theorem 4.10. Let X be a nonzero Banach lattice and Y be a B-cyclic Banach lattice.
The following are equivalent:

(1) #B(X,Y) is an injective Banach lattice with M(.#5(X,Y")) isomorphic to B.

(2) X is an AM-space and Y is an injective Banach lattice with M(Y") isomorphic to B.

(m1)EPrto

o(T):=su inf su mlx;|| 0 {xy, ..., 20} € Pan(X),
@y s ST ) € Pl

)

n
supz |mTa;|| < C
keN i

<1 Suppose that X is a Banach lattice, 2 is the completion of the metric space X"
within V®)_ and # is the Boolean valued representation of a B-cyclic Banach space Y. Then
[ 2 is a Banach lattice] = 1 and the map = +— " is a lattice isometry from X to 2.
Moreover, for every T' € #g(X,Y’) there exists a unique .7 := T1€ V® determined from the
formulas

[7 € 2( X, )] =1, [Ta"=Tz]=1 (z€X).

The map T+ 7 is an order preserving B-isometry from .3 (X, Y") onto the restricted descent
(X, %), see Kusraev and Kutateladze [7, 8.3.4] and [8, Theorem 5.13.6]. Note also that
X is an AM-space if and only if [ 2" is an AM-space] = 1 by Theorem 2.5 (3). Now, the
proof can be carried out in similar lines by Boolean valued interpretation of Theorem 4.9. >

The author thanks the referee for useful remarks leading to improvement of the article.
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OIIEPATOPBI B MTHBEKTUBHBIX BAHAXOBBIX PEHIETKAX

Kycpaes A. T

M3y9aioTcss HEKOTOPHIE CBOWCTBA OTPAHWYEHHBIX JIMHEHHBIX OMEPATOPOB B MHBEKTUBHBIX OAHAXOBBIX Pe-
NIeTKaxX, WCTOJb3ys Oy/JeBO3HAYHBIM MPUHIIAT TIEPEHOCa ¢ A L-TTPOCTPAHCTE Ha WHHEKTHUBHBIE 0AaHAXOBBI
pewerku, HoJLyYeHHbI B pabore asropa |[1].

Kurouesbie ciioBa: AM-npoctpanctBo, AL-pOCTPAHCTBO, WHbEKTHBHAs GaHAXOBa pelleTKa, OyJie-
BO3HAYHAA MOJEJIb, Oy/1eBO3HAUHBIN LIPUHIKIL IIEPEHOC, ypasuenue /layrasera, IUKIMIECKY KOMIAK THBIN
oneparop, B-cymMmupyomuit orepaTop.



