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Abstra
t. We show how binary 
orresponden
es 
an be used for simple formalization of the notion

of problem, de�nition of the basi
 
omponents of problems, their properties, and 
onstru
tions.

In parti
ular, formalization of the following notions is presented: 
ondition, data, unknowns, and solutions

of a problem, solvability and unique solvability, inverse problem, 
omposition and restri
tion of problems,

isomorphism between problems. We also 
onsider topologi
al problems and the related notions of stability

and 
orre
tness. A 
onne
tion is indi
ated between the stability and 
ontinuity of a uniquely solvable to-

pologi
al problem. The de�nition of parametrized set is given. The notions are introdu
ed of parametrized

problem, the problem of re
onstru
tion of an obje
t by the values of parameters, as well as the notions of

lo
ally free set of parameters and stability with respe
t to a set of parameters.

As an illustration, we 
onsider a singularly perturbed system of ordinary di�erential equations whi
h

des
ribe a pro
ess in 
hemi
al kineti
s and burning. Dire
t and inverse problems are stated for su
h

a system. We extend the 
lass of problems under study by 
onsidering polynomials of arbitrary degree as

the right-hand sides of the di�erential equations. It is shown how the inverse problem of 
hemi
al kineti
s


an be 
orre
ted and made more pra
ti
al by means of the 
omposition with a simple auxiliary problem

whi
h represents the relation between fun
tions and �nite sets of numeri
al 
hara
teristi
s being measured.

For the 
orre
ted inverse problem, formulas for the solution are presented and the 
onditions of unique

solvability are indi
ated. Within the study of solvability, a 
riterion is established for linear independen
e

of fun
tions in terms of �nite sets of their values. With the help of the 
riterion, realizability is 
lari�ed

of the 
ondition for unique solvability of the inverse problem of 
hemi
al kineti
s.
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We 
ontinue the study started in [1, 2℄ whi
h is devoted to formalization of the notion

of problem and solution of the inverse problem of 
hemi
al kineti
s. In parti
ular, we extend

the 
lass of problems under study by 
onsidering polynomials of arbitrary degree as the right-

hand sides of the di�erential equations.

1. Formalization of the notion of problem

In this se
tion, we employ binary 
orresponden
es for formalizing the notion of problem,

basi
 
omponents of problems, their properties, and 
onstru
tions: the 
ondition of a problem,

data and unknowns, solvability and unique solvability, inverse problem, 
omposition and rest-
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ri
tion of problems. We also 
onsider topologi
al problems, the related notions of stability

and 
orre
tness, and problems with parameters.

1.1. By a problem we mean an arbitrary 
orresponden
e between the elements of two sets,

i. e., a triple P = (A,B,C), where A and B are any sets and C ⊆ A×B. The sets A, B, and C
(i. e., the set of departure, the set of destination, and the graph of the 
orresponden
e P ) are
denoted by DomP , ImP , and GrP and 
alled the domain of data, the domain of unknowns,

and the 
ondition of the problem P . The 
ontainment (a, b) ∈ GrP is written as P (a, b) and
is treated as the 
ondition expressing the fa
t that the unknown b 
orresponds to the data a.
Therefore, the problem P assumes the following informal interpretation:

Given data a ∈ DomP , �nd unknowns b ∈ ImP whi
h meet the 
ondition P (a, b).

The image P [X] and preimage P−1[Y ] of subsets X ⊆ DomP and Y ⊆ ImP with respe
t to

the 
orresponden
e P are de�ned by the traditional formulas

P [X] = {b ∈ ImP : (∃x ∈ X) P (x, b)},

P−1[Y ] = {a ∈ DomP : (∃ y ∈ Y ) P (a, y)}.

1.2. A solution to a problem P for a data instan
e a ∈ DomP is an arbitrary unknown

b ∈ ImP whi
h meets the 
ondition P (a, b). The set of solutions to P for a is denoted by P [a].
Therefore,

P [a] = P [{a}] = {b ∈ ImP : P (a, b)}, a ∈ DomP.

A problem P is solvable for a ∈ DomP whenever P [a] 6= ∅, i. e., given a, the problem P has

at least one solution. The domain of de�nition of the 
orresponden
e P

domP := {a ∈ DomP : P [a] 6= ∅}

is 
alled the domain of solvability of the problem P . If domP = DomP , the problem P is


alled solvable or, more pre
isely, everywhere solvable.

1.3. A problem P is said to be uniquely solvable for a ∈ DomP if, given a, the problem P
has a unique solution, i. e., P [a] = {b} for some b ∈ ImP . The 
orresponding solution b is
denoted by P s(a). Therefore, if P is uniquely solvable for a then

P [a] = {P s(a)}.

The set

domP s := {a ∈ DomP : P is uniquely solvable for a}

is 
alled the domain of unique solvability of the problem P , and the fun
tion

P s : domP s → ImP, a 7→ P s(a)

is 
alled the solution fun
tion of the problem P . Obviously, domP s ⊆ domP ⊆ DomP . The
problem P is uniquely solvable on a set D ⊆ DomP if D ⊆ domP s

. The problem P is 
alled

uniquely solvable or, more pre
isely, everywhere uniquely solvable if it is uniquely solvable on

DomP , i. e., domP s = DomP . In this 
ase, the 
orresponden
e P is an everywhere de�ned

fun
tion and thus 
oin
ides with P s

.

1.4. Given a problem P = (DomP, ImP, GrP ), the inverse problem is the inverse


orresponden
e

P−1 :=
(

ImP, DomP, (GrP )−1
)

, where (GrP )−1 = {(b, a) : (a, b) ∈ GrP}.
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Remark. If a problem P models a real physi
al pro
ess, 
onsideration of the inverse

problem P−1
is motivated by the sear
h of a relatively simple formal law whi
h des
ribes

the pro
ess with adequate a

ura
y. The data of the inverse problem are experimentally

measurable 
hara
teristi
s of the pro
ess, while the unknowns are, for instan
e, the 
oe�
ients

of a di�erential equation des
ribing the pro
ess under observation.

In the 
ase when the problem P is based on a fun
tional equation, the formal data of the

inverse problem P−1
are fun
tions of the 
orresponding 
lass, while, in pra
ti
e, the role of da-

ta of the inverse problem is not played by the fun
tions themselves but rather by some of

their 
hara
teristi
s whi
h 
an be measured, i. e., by 
ertain �nite sets of numbers.

The inverse problem 
an be suitably 
orre
ted by means of the 
omposition (see 1.5) of the

problem P−1
and a simple auxiliary problem whi
h represents the relation between fun
tions

and their 
hara
teristi
s being measured. (An example of su
h 
orre
tion is presented in 2.3.)

1.5. The 
omposition of problems P and Q is the 
omposition of the 
orresponden
es,

whi
h is the problem

Q ◦ P := (DomP, ImQ, GrQ ◦GrP )

with 
ondition

GrQ ◦GrP =
{

(a, c) ∈ DomP × ImQ : (∃ b ∈ ImP ∩DomQ) P (a, b) & Q(b, c)
}

.

The 
omposition Q ◦ P is usually 
onsidered in the 
ase when ImP = DomQ.

1.6. The restri
tion of a problem P onto subsets A ⊆ DomP and B ⊆ ImP is the problem

P
∣

∣

B

A
:=

(

A, B, GrP ∩ (A×B)
)

.

The restri
tions P |A := P
∣

∣

ImP

A
and P |B := P

∣

∣

B

DomP
are parti
ular 
ases.

The restri
tion of a problem 
an be de�ned by means of 
omposition with the


orresponding embedding problems. Given arbitrary sets X and Y , 
onsider the problem

Id

Y
X := (X,Y, IYX ), where

IYX = {(z, z) : z ∈ X ∩ Y } = {(x, y) ∈ X × Y : x = y}.

Then, for every problem P and any subsets A ⊆ DomP and B ⊆ ImP , the following hold:

P |A = P ◦ IdDomP
A , P |B = Id

B
ImP ◦ P, P

∣

∣

B

A
= Id

B
ImP ◦ P ◦ IdDomP

A .

1.7. An isomorphism between problems P and Q is a pair (f, g) of bije
tive mappings
f : DomP → DomQ, g : ImP → ImQ su
h that

GrQ =
{(

f(a), g(b)
)

: (a, b) ∈ GrP
}

.

Two problems are 
alled isomorphi
 if there is an isomorphism between them.

1.8. Call P a topologi
al problem if the domain of data DomP and the domain of un-

knowns ImP are endowed with any topologies, i. e., the domains are topologi
al spa
es.

An isomorphism (f, g) between topologi
al problems is a topologi
al isomorphism if ea
h of

the mappings f and g is a topologi
al isomorphism (i. e., a homeomorphism).
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All the notions introdu
ed here, whi
h are related to topologies or 
ontinuity, admit

natural analogs for the 
ase of uniformities and uniform 
ontinuity. (Metri
 and, in parti
ular,

normed spa
es are examples of uniform spa
es.) We will not present the 
orresponding 
lari�ed

de�nitions, whi
h are rather obvious.

1.9. A topologi
al problem P is 
alled stable at a point a ∈ domP if the 
orresponden
e

P is upper semi-
ontinuous at the point, i. e., for every neighborhood V of the set P [a] in
ImP , the preimage P−1[V ] is a neighborhood of the point a in domP . The problem P is

stable on a set D ⊆ domP if P is stable at ea
h point a ∈ D. The problem P is 
alled stable

or, more pre
isely, everywhere stable if P is stable on domP .

In the 
ase when a is an interior point of domP s

relative to domP (i. e., there exists an

open set G ⊆ DomP su
h that a ∈ G∩domP ⊆ domP s

), the stability of the problem P at a
is equivalent to the 
ontinuity of the fun
tion P s

at a. Analogously, if a set D is in
luded in

the interior of domP s

relative to domP (i. e., there exists an open set G ⊆ DomP su
h that

D ⊆ G ∩ domP ⊆ domP s

), then the stability of the problem P on D is equivalent to the


ontinuity of the fun
tion P s

on D. In parti
ular, the stability of a uniquely solvable problem

is equivalent to its 
ontinuity.

1.10. A topologi
al problem P is 
alled 
orre
t (or, more pre
isely, lo
ally 
orre
t) at

a point a ∈ DomP if a is an interior point of domP s

and the problem P is stable at a. In other
words, a problem is 
orre
t at a if, for data su�
iently 
lose to a, the problem has a unique

solution, and the solution 
ontinuously depends on the data as it tends to a. A problem P
is said to be 
orre
t (or, more pre
isely, 
onditionally 
orre
t) on a set D ⊆ DomP if P is


orre
t at ea
h point a ∈ D. A problem P is 
alled 
orre
t if P is 
orre
t on DomP . Therefore,
the 
orre
tness of a problem means its unique solvability and stability (or, whi
h is the same,


ontinuity).

1.11. By a family (vi)i∈I we traditionally mean a fun
tion de�ned on I, and the term

vi denotes the value of the fun
tion at a point i ∈ I. Given an arbitrary family (Vi)i∈I , the
symbol

∏

i∈I Vi stands for the 
orresponding Cartesian produ
t, whi
h is the set of families

(vi)i∈I su
h that vi ∈ Vi for all i ∈ I. If π : X →
∏

i∈I Vi, i ∈ I, and J ⊆ I, the fun
tions

πi : X → Vi, πJ : X →
∏

j∈J

Vj

are de�ned by the formulas

πi(x) := π(x)i ∈ Vi, πJ(x) := π(x)|J ∈
∏

j∈J

Vj , x ∈ X.

1.12. A parametrization of a setX is an arbitrary inje
tive mapping π de�ned on Domπ :=
domπ = X and a
ting into the Cartesian produ
t Imπ :=

∏

i∈I Vi of some family (Vi)i∈I .
In this 
ase, I is 
alled the set of parameters and denoted by Parπ, the elements i ∈ Parπ are


alled parameters, the set Imπi := Vi is 
alled the range of the parameter i, and πi(x) ∈ Imπi
is the value of the parameter i for an obje
t x ∈ X. The produ
t

∏

j∈J Vj is 
alled the range

of the set of parameters J ⊆ Par π and denoted by ImπJ .

Note that the range Imπi of a parameter i need not 
oin
ide with the set imπi = πi[X]
of the values of the parameter, i. e., the in
lusion imπi ⊆ Imπi 
an be stri
t. In the 
ase of

equality imπi = Imπi, the range of the parameter i is 
alled exa
t.
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A set endowed with a parametrization is 
alled a parametrized set. By default, the

parametrization of X is denoted by π or, more expli
itely, by πX
.

1.13. When 
onsidering a parametrization π of a topologi
al spa
e X, it is natural to

endow the set ImπJ , where J ⊆ Parπ, with the image of the topology of X with respe
t

to πJ , i. e., to assume open those subsets U ⊆ ImπJ whose preimage π−1
J [U ] is open in X.

In this 
ase, π o

urs a 
ontinuous mapping from X into Imπ and a topologi
al isomorphism

between X and imπ.

The ranges Imπi of the parameters i ∈ Par π usually have their own natural topologies

whi
h make the mappings πi 
ontinuous. Otherwise, Imπi 
an be endowed with the image of

the topology of X with respe
t to πi or with the topology indu
ed from Imπ in whi
h the

open subsets of Imπi are the sets of the form {ui : u ∈ U}, where U is open in Imπ.

The ranges of parameters are often Bana
h spa
es. In this 
ase, parametrized topologi
al

spa
es are 
lose analogs of Bana
h bundles (see, for instan
e, [3℄), where the domain I
of a bundle V plays the role of the set of parameters, and the stalks V (i) are the ranges

of parameters i ∈ I.

1.14. A problem P is 
alled parametrized (or a problem with parameters) if its domain

of data DomP and domain of unknowns ImP are parametrized sets. Every problem 
an

be regarded parametrized if we assume that non-parametrized domains X are endowed with

trivial parametrizations having single parameter: π1(x) = x for all x ∈ X.

As is easily seen, the pair (πA, πB) is an isomorphism between a parametrized

problem (A,B,C) and the problem (A′, B′, C ′), where A′ = imπA
, B′ = imπB

, and

C ′ =
{(

πA(a), πB(b)
)

: (a, b) ∈ C
}

. Furthermore, if the problem (A,B,C) is topologi
al then
so are the problem (A′, B′, C ′) and the isomorphism (πA, πB).

1.15. Let π be a parametrization of a set A, a ∈ A, J ⊆ Par π, J ′ := Parπ\J . Denote by
Res

a
J(A) the problem (Im πJ , A,R

a
J ), where

Ra
J = {(v, b) : v ∈ ImπJ , b ∈ A, πJ(b) = v, πJ ′(b) = πJ ′(a)},

whi
h is the problem of re
onstru
tion of an element of A by the values of the parameters J
on assuming �xed the values of the rest parameters. In the 
ase J = {i}, we write Resai (A)
instead of Res

a
{i}(A).

Sin
e π is inje
tive, the problem Res

a
J(A) is uniquely solvable on the set

domRes

a
J(A) = {πJ ′(b) : b ∈ A, πJ ′(b) = πJ ′(a)}

and its solution for every v ∈ domRes

a
J(A) is determined by the formula

Res

a
J(A)

s(v) = π−1 (v ⊗ πJ ′(a)) , where (v ⊗ w)i =

{

vi, if i ∈ J ;

wi, if i /∈ J.

1.16. Let π be a parametrization of a topologi
al spa
e A, a ∈ A, J ⊆ Par π. A set

of parameters J is lo
ally free at the point a, if the domain of solvability domRes

a
J(A) of

the problem Res

a
J(A) is a neighborhood of the point πJ(a) in the topologi
al spa
e ImπJ .

Therefore, a lo
ally free set of parameters realizes all su�
iently small 
hanges of values with

the values of the rest parameters �xed. A parameter i is lo
ally free at a if so is the set {i}.
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1.17. Let P be a parametrized topologi
al problem, a ∈ domP , and let J ⊆ Parπ,
where π := πdomP

. The problem P is stable at the point a with respe
t to J , if the problem
P ◦ ResaJ(domP ) is stable at the point πJ(a). Stability of a problem at a with respe
t to J
is usually 
onsidered in the 
ase when the set of parameters J is lo
ally free at the point a.

The problem P is stable on a set D ⊆ domP with respe
t to J , if P is stable at ea
h point

a ∈ D with respe
t to J . The problem P is stable with respe
t to J if P is stable on domP
with respe
t to J . In the 
ase J = {i}, the term stability with respe
t to the parameter i
is used.

If the natural topology on im πJ is 
onsidered and a is an interior point of domP s

relative

to domP , the stability of a uniquely solvable problem P at the point a with respe
t to J
is equivalent to the 
ontinuity at a of the fun
tion

v ∈ πJ [domR] 7→ P s (Rs(v)) , where R := Res

a
J(DomP ).

The latter, in its turn, means that the solution P s(b) 
ontinuously depends on the values

πJ(b) of the parameters J as πJ(b) tend to πJ(a) with the equality πJ ′(b) = πJ ′(a) preserved.

1.18. Let P be a parametrized topologi
al problem, i ∈ Parπ. The problem P is 
alled

a �problem with small parameter i � if Imπi ⊆ R, the number 0 is a limit point of Imπi, and
a question is under 
onsideration about any asymptoti
 behavior of P for the values of i 
lose
to 0, for instan
e, about the stability of P with respe
t to i at a point a with πi(a) = 0.

2. The inverse problem of 
hemi
al kineti
s

As an illustration, we 
onsider a singularly perturbed system of ordinary di�erential

equations whi
h arises in modeling 
ertain pro
esses of 
hemi
al kineti
s and burning (see,

for instan
e, [4, 5℄). Within the study of the 
orresponding inverse problem, a 
riterion will be

established for linear independen
e of fun
tions in terms of �nite sets of their values (see 2.5).

2.1. Suppose that m,n ∈ N, X := R
m
, Y is a domain in R

n
, T := R, 0 < ε0 ∈ R. Put

E := {ε ∈ R : 0 6 ε 6 ε0}, F := C(X × Y × T × E, Rm), G := C(X × Y × T × E, Rn).

Consider the problem P with domain of data DomP = F ×G×E, domain of unknowns

ImP = C1(T,X) ×C1(T, Y ), and 
ondition

P ((f, g, ε), (x, y)) ⇔

{

ẋ(t) = f(x(t), y(t), t, ε),

ε ẏ(t) = g(x(t), y(t), t, ε)
for all t ∈ T,

where f ∈ F , g ∈ G, ε ∈ E, x ∈ C1(T,X), y ∈ C1(T, Y ).

Solution of the problem P is based on the method of integral manifolds (see [6�8℄),

a 
onvenient tool for studying multidimensional singularly perturbed systems of di�erential

equations whi
h makes it possible to lower the dimension of the system under study.

In the problem P , the number ε plays the role of �small parameter� thus splitting the

system into �slow� and �fast� subsystems:

ẋ(t) = f(x(t), y(t), t, ε) and ε ẏ(t) = g(x(t), y(t), t, ε).

Solution of P in a sense redu
es to solving the so 
alled degenerate system whi
h is obtained

from the initial system by putting the parameter ε equal to zero. This is justi�ed by the

results of A. N. Tikhonov (see, for instan
e, [9℄) on passing to a solution to the degenerate

problem as a small parameter tends to zero.
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2.2. The inverse problem to P 
onsists in �nding the unknown fun
tions on the right-

hand side of the system, given some data on the solution to the dire
t problem P . The 
lose

onne
tion of the initial problem with the degenerate system motivates the study of the 
ase

ε = 0. We additionally assume that the �slow surfa
e� de�ned by the equation

g
(

x, y, t, 0
)

= 0


onsists of a single sheet (with respe
t to the dependen
e of y on x) and that the fun
tion

g ∈ G meets the 
ondition of the impli
it fun
tion theorem, whi
h fa
t allows us to repla
e

the equation

g(x(t), y(t), t, 0) = 0

by the equivalent equation of the form

y(t) = h(x(t), t).

We also assume that the right-hand side f of the main di�erential equation is a polynomial

(whi
h is natural for problems of 
hemi
al kineti
s).

So, 
onsider the partial 
ase of the problem P in whi
h m = n = 1, E = {0}, and the

fun
tions f ∈ F are polynomials in two variables of degree at most p ∈ N:

f(x, y, t, ε) =
∑

(i,j)∈K(p)

γij x
iyj,

where γij ∈ R, (i, j) ∈ K(p),

K(p) := {(i, j) : 0 6 i, j ∈ Z, i+ j 6 p} .

Introdu
e the notation

κ(p) :=
(p + 1)(p + 2)

2

for the number of elements of the set K(p) and �x an arbitrary enumeration

K(p) =
{

(i1, j1), (i2, j2), . . . ,
(

iκ(p), jκ(p)
)}

.

Therefore, the expression

∑κ(p)
k=1 γk x

ikyjk is the general form of a polynomial in two variables

x, y of degree at most p.

As a result of the above agreements, we arrive at the problem Q with domain of data

DomQ = R
κ(p)

, domain of unknowns ImQ = C1(R)2, and 
ondition

Q
(

γ, (x, y)
)

⇔











ẋ(t) =
κ(p)
∑

k=1

γk x(t)
ik y(t)jk ,

y(t) = h(x(t), t)

for all t ∈ R,

where γ1, γ2, . . . , γκ(p) ∈ R, x, y ∈ C1(R), h ∈ C1(R2).

2.3. The formal inverse problem Q−1
, whi
h has pairs of fun
tions (x, y) ∈ C1(R)2 as

data, is very simple and impra
ti
al. For representing the domain of data, �nite 
olle
tions

of the values of fun
tions or their derivatives are more adequate than everywhere de�ned

fun
tions. The 
orresponding 
orre
tion of the inverse problem is realized by 
omposition of
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the problem Q−1
and the auxiliary problem R with domain of data DomR = (Rκ(p))3, domain

of unknowns ImR = C1(R)2, and 
ondition

R ((τ, α, β), (x, y)) ⇔

{

x(τ1) = α1, x(τ2) = α2, . . . , x(τκ(p)) = ακ(p),

ẋ(τ1) = β1, ẋ(τ2) = β2, . . . , ẋ(τκ(p)) = βκ(p),

where τ, α, β ∈ R
κ(p)

, x, y ∈ C1(R).

As 
ompared to the formal inverse Q−1
, the 
omposition Q−1 ◦ R is more pra
ti
al and

amounts to the following problem: Given τ, α, β ∈ R
κ(p)

, �nd the 
oe�
ients γ ∈ R
κ(p)

for

whi
h there exist fun
tions x, y ∈ C1(R) subje
t to the 
ondition































x(τ1) = α1, x(τ2) = α2, . . . , x(τκ(p)) = ακ(p),

ẋ(τ1) = β1, ẋ(τ2) = β2, . . . , ẋ(τκ(p)) = βκ(p),

ẋ(t) =
κ(p)
∑

k=1

γk x(t)
ik y(t)jk for all t ∈ R,

y(t) = h
(

x(t), t
)

for all t ∈ R.

2.4. The following assertion 
an be proven for arbitrary p ∈ N in the same way as the


ase p = 1 whi
h is 
onsidered in [10, 11℄.

Theorem. If τ, α ∈ R
κ(p)

meet the 
ondition

∆(τ, α) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αi1
1 h(α1, τ1)

j1 αi2
1 h(α1, τ1)

j2 . . . α
iκ(p)
1 h(α1, τ1)

jκ(p)

αi1
2 h(α2, τ2)

j1 αi2
2 h(α2, τ2)

j2 . . . α
iκ(p)
2 h(α2, τ2)

jκ(p)

. . . . . . . . . . . .

αi1
κ(p) h(ακ(p), τκ(p))

j1 αi2
κ(p) h(ακ(p), τκ(p))

j2 . . . α
iκ(p)

κ(p) h(ακ(p), τκ(p))
jκ(p)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0,

then, given arbitrary β ∈ R
κ(p)

, the problem Q−1◦R is uniquely solvable for the data (τ, α, β),
and its solution (γ1, γ2, . . . , γκ(p)) = (Q−1◦R)s(τ, α, β) 
an be 
al
ulated by Cramer's formulas

γk =
∆k(τ, α, β)

∆(τ, α)
, k = 1, 2, . . . , κ(p),

where ∆k(τ, α, β) is the determinant of the matrix formed from the above matrix by repla
ing

the kth 
olumn

(

αik
1 h(α1, τ1)

jk , αik
2 h(α2, τ2)

jk , . . . , αik
κ(p) h(ακ(p), τκ(p))

jk
)

with the 
olumn

β = (β1, β2, . . . , βκ(p)).

2.5. The following 
riterion 
lari�es the 
ase in whi
h there exist numbers τ1, . . . , τκ(p)
satisfying the hypothesis of Theorem 2.4.

Theorem. Let n ∈ N, let T be an arbitrary set, and let ϕi : T → R, i = 1, . . . , n.
The family of fun
tions ϕ1, . . . , ϕn is linearly independent in the ve
tor spa
e R

T
if and only

if there are points t1, . . . , tn ∈ T satisfying the 
ondition

∣

∣

∣

∣

∣

∣

∣

∣

ϕ1(t1) ϕ2(t1) . . . ϕn(t1)
ϕ1(t2) ϕ2(t2) . . . ϕn(t2)
. . . . . . . . . . . .

ϕ1(tn) ϕ2(tn) . . . ϕn(tn)

∣

∣

∣

∣

∣

∣

∣

∣

6= 0 . (1)
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⊳ For 
onvenien
e, introdu
e a notation for the matrix in (1):

Mn(ϕ1, . . . , ϕn; t1, . . . , tn) :=









ϕ1(t1) ϕ2(t1) . . . ϕn(t1)
ϕ1(t2) ϕ2(t2) . . . ϕn(t2)
. . . . . . . . . . . .

ϕ1(tn) ϕ2(tn) . . . ϕn(tn)









.

The 
ase n = 1 is trivial: if {ϕ1} is linearly independent then ϕ1 6= 0 and, hen
e, for some
point t1 ∈ T we have ϕ1(t1) 6= 0, i. e., |M1(ϕ1; t1)| 6= 0.

Let n ∈ N and assume that for every linearly independent family ϕ1, . . . , ϕn : T → R

there exist points t1, . . . , tn ∈ T satisfying (1). Now 
onsider a linearly independent family

ϕ1, . . . , ϕn, ϕn+1 : T → R. By the indu
tion hypothesis, there are points t1, . . . , tn ∈ T su
h

that the matrix

M := Mn(ϕ1, . . . , ϕn; t1, . . . , tn)

is invertible. We are to �nd a point t ∈ T whi
h ensures invertibility of the matrix

M(t) := Mn+1(ϕ1, . . . , ϕn, ϕn+1; t1, . . . , tn, t).

Assume to the 
ontrary that |M(t)| = 0 for all t ∈ T . Then, for ea
h t ∈ T , there is a tuple
0 6=

(

α1(t), . . . , αn+1(t)
)

∈ R
n+1

satisfying the 
ondition

M(t)
(

α1(t), . . . , αn+1(t)
)

= 0

or, whi
h is the same,























ϕ1(t1)α1(t) + · · ·+ ϕn(t1)αn(t) + ϕn+1(t1)αn+1(t) = 0,

ϕ1(t2)α1(t) + · · ·+ ϕn(t2)αn(t) + ϕn+1(t2)αn+1(t) = 0,

. . . ,

ϕ1(tn)α1(t) + · · ·+ ϕn(tn)αn(t) + ϕn+1(tn)αn+1(t) = 0,

(2)

ϕ1(t)α1(t) + · · · + ϕn(t)αn(t) + ϕn+1(t)αn+1(t) = 0. (3)

The subsystem (2) is equivalent to the equality

M(α1(t), . . . , αn(t)) + αn+1(t)(ϕn+1(t1), . . . , ϕn+1(tn)) = 0

whi
h implies

(α1(t), . . . , αn(t)) = −αn+1(t)M
−1 (ϕn+1(t1), . . . , ϕn+1(tn)) . (4)

Due to (4), in the 
ase αn+1(t) = 0 we would have α1(t) = · · · = αn+1(t) = 0, whi
h

ontradi
ts the 
ondition (α1(t), . . . , αn+1(t)) 6= 0. Consequently, αn+1(t) 6= 0 and

(

α1(t)

αn+1(t)
, . . . ,

αn(t)

αn+1(t)

)

= −M−1 (ϕn+1(t1), . . . , ϕn+1(tn)) . (5)

A

ording to (5), the numbers β1 :=
α1(t)

αn+1(t)
, . . . , βn := αn(t)

αn+1(t)
do not depend on t. It remains

to observe that (3) implies

β1ϕ1(t) + · · ·+ βnϕn(t) + ϕn+1(t) = 0 for all t ∈ T


ontrary to the linear independen
e of the family ϕ1, . . . , ϕn, ϕn+1. ⊲
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2.6. Theorems 2.4 and 2.5 dire
tly imply the following 
ondition for unique solvability of

the �
orre
ted inverse problem� Q−1 ◦R.

Theorem. Let x ∈ C1(R), h ∈ C1(R2). If the family of fun
tions

t 7→ x(t)ik h(x(t), t)jk , k = 1, 2, . . . , κ(p),

is linearly independent in the ve
tor spa
e R
R
then there exist τ1, . . . , τκ(p) ∈ R su
h that,

for all β1, . . . , βκ(p) ∈ R, the problem Q−1 ◦ R is uniquely solvable for the data τ1, . . . , τκ(p),
x(τ1), . . . , x(τκ(p)), β1, . . . , βκ(p).
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Àííîòàöèÿ. Ïîêàçàíî, êàê áèíàðíûå ñîîòâåòñòâèÿ ìîãóò áûòü èñïîëüçîâàíû äëÿ ïðîñòîé �îðìà-

ëèçàöèè ïîíÿòèÿ çàäà÷è, îïðåäåëåíèÿ îñíîâíûõ êîìïîíåíòîâ çàäà÷, èõ ñâîéñòâ è êîíñòðóêöèé. Â ÷àñò-

íîñòè, ïðåäëîæåíà �îðìàëèçàöèÿ ñëåäóþùèõ ïîíÿòèé: óñëîâèå, äàííûå, èñêîìûå è ðåøåíèÿ çàäà÷è,

ðàçðåøèìîñòü è îäíîçíà÷íàÿ ðàçðåøèìîñòü, îáðàòíàÿ çàäà÷à, êîìïîçèöèÿ è îãðàíè÷åíèå çàäà÷, èçîìîð-

�èçì ìåæäó çàäà÷àìè. �àññìîòðåíû òîïîëîãè÷åñêèå çàäà÷è è ñâÿçàííûå ñ íèìè ïîíÿòèÿ óñòîé÷èâîñòè

è êîððåêòíîñòè. Óêàçàíà ñâÿçü ìåæäó óñòîé÷èâîñòüþ è íåïðåðûâíîñòüþ îäíîçíà÷íî ðàçðåøèìîé òîïî-

ëîãè÷åñêîé çàäà÷è. Äàíî îïðåäåëåíèå ïàðàìåòðèçàöèè ìíîæåñòâà. Ââåäåíû ïîíÿòèÿ ïàðàìåòðèçîâàííîé

çàäà÷è, çàäà÷è âîññòàíîâëåíèÿ îáúåêòà ïî çíà÷åíèÿì ïàðàìåòðîâ, à òàêæå ïîíÿòèÿ ëîêàëüíî ñâîáîäíîãî

íàáîðà ïàðàìåòðîâ è óñòîé÷èâîñòè îòíîñèòåëüíî íàáîðà ïàðàìåòðîâ.

Â êà÷åñòâå èëëþñòðàöèè ðàññìîòðåíà ñèíãóëÿðíî âîçìóùåííàÿ ñèñòåìà îáûêíîâåííûõ äè��åðåíöèàëü-

íûõ óðàâíåíèé, îïèñûâàþùàÿ ïðîöåññ õèìè÷åñêîé êèíåòèêè è ãîðåíèÿ. Äëÿ òàêîé ñèñòåìû ñ�îðìóëè-

ðîâàíû ïðÿìàÿ è îáðàòíàÿ çàäà÷à. Èçó÷àåìûé êëàññ çàäà÷ ðàñøèðåí çà ñ÷åò ðàññìîòðåíèÿ ìíîãî÷ëåíîâ

ïðîèçâîëüíîé ñòåïåíè â êà÷åñòâå ïðàâûõ ÷àñòåé äè��åðåíöèàëüíûõ óðàâíåíèé. Ïîêàçàíî, êàê îáðàò-

íàÿ çàäà÷à õèìè÷åñêîé êèíåòèêè ìîæåò áûòü ñêîððåêòèðîâàíà è ïðèáëèæåíà ê ïðàêòèêå ïîñðåäñòâîì

êîìïîçèöèè ñ ïðîñòîé âñïîìîãàòåëüíîé çàäà÷åé, ðåàëèçóþùåé ñâÿçü ìåæäó �óíêöèÿìè è êîíå÷íûìè

íàáîðàìè èçìåðÿåìûõ ÷èñëîâûõ õàðàêòåðèñòèê. Ïðèâåäåíû �îðìóëû ðåøåíèÿ è óêàçàíû óñëîâèÿ îä-

íîçíà÷íîé ðàçðåøèìîñòè ñêîððåêòèðîâàííîé îáðàòíîé çàäà÷è. Â ðàìêàõ èññëåäîâàíèÿ ðàçðåøèìîñòè

ïîëó÷åí êðèòåðèé ëèíåéíîé íåçàâèñèìîñòè âåùåñòâåííûõ �óíêöèé â òåðìèíàõ êîíå÷íûõ íàáîðîâ èõ

çíà÷åíèé. Ñ ïîìîùüþ óñòàíîâëåííîãî êðèòåðèÿ óòî÷íåíà ðåàëèçóåìîñòü óñëîâèÿ îäíîçíà÷íîé ðàçðåøè-

ìîñòè îáðàòíîé çàäà÷è õèìè÷åñêîé êèíåòèêè.

Êëþ÷åâûå ñëîâà: áèíàðíîå ñîîòâåòñòâèå, îáðàòíàÿ çàäà÷à, ðàçðåøèìîñòü, êîìïîçèöèÿ, óñòîé÷è-

âîñòü, êîððåêòíîñòü, äè��åðåíöèàëüíîå óðàâíåíèå, õèìè÷åñêàÿ êèíåòèêà, ëèíåéíàÿ íåçàâèñèìîñòü.
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