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Abstrat. We show how binary orrespondenes an be used for simple formalization of the notion

of problem, de�nition of the basi omponents of problems, their properties, and onstrutions.

In partiular, formalization of the following notions is presented: ondition, data, unknowns, and solutions

of a problem, solvability and unique solvability, inverse problem, omposition and restrition of problems,

isomorphism between problems. We also onsider topologial problems and the related notions of stability

and orretness. A onnetion is indiated between the stability and ontinuity of a uniquely solvable to-

pologial problem. The de�nition of parametrized set is given. The notions are introdued of parametrized

problem, the problem of reonstrution of an objet by the values of parameters, as well as the notions of

loally free set of parameters and stability with respet to a set of parameters.

As an illustration, we onsider a singularly perturbed system of ordinary di�erential equations whih

desribe a proess in hemial kinetis and burning. Diret and inverse problems are stated for suh

a system. We extend the lass of problems under study by onsidering polynomials of arbitrary degree as

the right-hand sides of the di�erential equations. It is shown how the inverse problem of hemial kinetis

an be orreted and made more pratial by means of the omposition with a simple auxiliary problem

whih represents the relation between funtions and �nite sets of numerial harateristis being measured.

For the orreted inverse problem, formulas for the solution are presented and the onditions of unique

solvability are indiated. Within the study of solvability, a riterion is established for linear independene

of funtions in terms of �nite sets of their values. With the help of the riterion, realizability is lari�ed

of the ondition for unique solvability of the inverse problem of hemial kinetis.

Key words: binary orrespondene, inverse problem, solvability, omposition, stability, orretness,

di�erential equation, hemial kinetis, linear independene.
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We ontinue the study started in [1, 2℄ whih is devoted to formalization of the notion

of problem and solution of the inverse problem of hemial kinetis. In partiular, we extend

the lass of problems under study by onsidering polynomials of arbitrary degree as the right-

hand sides of the di�erential equations.

1. Formalization of the notion of problem

In this setion, we employ binary orrespondenes for formalizing the notion of problem,

basi omponents of problems, their properties, and onstrutions: the ondition of a problem,

data and unknowns, solvability and unique solvability, inverse problem, omposition and rest-
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rition of problems. We also onsider topologial problems, the related notions of stability

and orretness, and problems with parameters.

1.1. By a problem we mean an arbitrary orrespondene between the elements of two sets,

i. e., a triple P = (A,B,C), where A and B are any sets and C ⊆ A×B. The sets A, B, and C
(i. e., the set of departure, the set of destination, and the graph of the orrespondene P ) are
denoted by DomP , ImP , and GrP and alled the domain of data, the domain of unknowns,

and the ondition of the problem P . The ontainment (a, b) ∈ GrP is written as P (a, b) and
is treated as the ondition expressing the fat that the unknown b orresponds to the data a.
Therefore, the problem P assumes the following informal interpretation:

Given data a ∈ DomP , �nd unknowns b ∈ ImP whih meet the ondition P (a, b).

The image P [X] and preimage P−1[Y ] of subsets X ⊆ DomP and Y ⊆ ImP with respet to

the orrespondene P are de�ned by the traditional formulas

P [X] = {b ∈ ImP : (∃x ∈ X) P (x, b)},

P−1[Y ] = {a ∈ DomP : (∃ y ∈ Y ) P (a, y)}.

1.2. A solution to a problem P for a data instane a ∈ DomP is an arbitrary unknown

b ∈ ImP whih meets the ondition P (a, b). The set of solutions to P for a is denoted by P [a].
Therefore,

P [a] = P [{a}] = {b ∈ ImP : P (a, b)}, a ∈ DomP.

A problem P is solvable for a ∈ DomP whenever P [a] 6= ∅, i. e., given a, the problem P has

at least one solution. The domain of de�nition of the orrespondene P

domP := {a ∈ DomP : P [a] 6= ∅}

is alled the domain of solvability of the problem P . If domP = DomP , the problem P is

alled solvable or, more preisely, everywhere solvable.

1.3. A problem P is said to be uniquely solvable for a ∈ DomP if, given a, the problem P
has a unique solution, i. e., P [a] = {b} for some b ∈ ImP . The orresponding solution b is
denoted by P s(a). Therefore, if P is uniquely solvable for a then

P [a] = {P s(a)}.

The set

domP s := {a ∈ DomP : P is uniquely solvable for a}

is alled the domain of unique solvability of the problem P , and the funtion

P s : domP s → ImP, a 7→ P s(a)

is alled the solution funtion of the problem P . Obviously, domP s ⊆ domP ⊆ DomP . The
problem P is uniquely solvable on a set D ⊆ DomP if D ⊆ domP s

. The problem P is alled

uniquely solvable or, more preisely, everywhere uniquely solvable if it is uniquely solvable on

DomP , i. e., domP s = DomP . In this ase, the orrespondene P is an everywhere de�ned

funtion and thus oinides with P s

.

1.4. Given a problem P = (DomP, ImP, GrP ), the inverse problem is the inverse

orrespondene

P−1 :=
(

ImP, DomP, (GrP )−1
)

, where (GrP )−1 = {(b, a) : (a, b) ∈ GrP}.
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Remark. If a problem P models a real physial proess, onsideration of the inverse

problem P−1
is motivated by the searh of a relatively simple formal law whih desribes

the proess with adequate auray. The data of the inverse problem are experimentally

measurable harateristis of the proess, while the unknowns are, for instane, the oe�ients

of a di�erential equation desribing the proess under observation.

In the ase when the problem P is based on a funtional equation, the formal data of the

inverse problem P−1
are funtions of the orresponding lass, while, in pratie, the role of da-

ta of the inverse problem is not played by the funtions themselves but rather by some of

their harateristis whih an be measured, i. e., by ertain �nite sets of numbers.

The inverse problem an be suitably orreted by means of the omposition (see 1.5) of the

problem P−1
and a simple auxiliary problem whih represents the relation between funtions

and their harateristis being measured. (An example of suh orretion is presented in 2.3.)

1.5. The omposition of problems P and Q is the omposition of the orrespondenes,

whih is the problem

Q ◦ P := (DomP, ImQ, GrQ ◦GrP )

with ondition

GrQ ◦GrP =
{

(a, c) ∈ DomP × ImQ : (∃ b ∈ ImP ∩DomQ) P (a, b) & Q(b, c)
}

.

The omposition Q ◦ P is usually onsidered in the ase when ImP = DomQ.

1.6. The restrition of a problem P onto subsets A ⊆ DomP and B ⊆ ImP is the problem

P
∣

∣

B

A
:=

(

A, B, GrP ∩ (A×B)
)

.

The restritions P |A := P
∣

∣

ImP

A
and P |B := P

∣

∣

B

DomP
are partiular ases.

The restrition of a problem an be de�ned by means of omposition with the

orresponding embedding problems. Given arbitrary sets X and Y , onsider the problem

Id

Y
X := (X,Y, IYX ), where

IYX = {(z, z) : z ∈ X ∩ Y } = {(x, y) ∈ X × Y : x = y}.

Then, for every problem P and any subsets A ⊆ DomP and B ⊆ ImP , the following hold:

P |A = P ◦ IdDomP
A , P |B = Id

B
ImP ◦ P, P

∣

∣

B

A
= Id

B
ImP ◦ P ◦ IdDomP

A .

1.7. An isomorphism between problems P and Q is a pair (f, g) of bijetive mappings
f : DomP → DomQ, g : ImP → ImQ suh that

GrQ =
{(

f(a), g(b)
)

: (a, b) ∈ GrP
}

.

Two problems are alled isomorphi if there is an isomorphism between them.

1.8. Call P a topologial problem if the domain of data DomP and the domain of un-

knowns ImP are endowed with any topologies, i. e., the domains are topologial spaes.

An isomorphism (f, g) between topologial problems is a topologial isomorphism if eah of

the mappings f and g is a topologial isomorphism (i. e., a homeomorphism).
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All the notions introdued here, whih are related to topologies or ontinuity, admit

natural analogs for the ase of uniformities and uniform ontinuity. (Metri and, in partiular,

normed spaes are examples of uniform spaes.) We will not present the orresponding lari�ed

de�nitions, whih are rather obvious.

1.9. A topologial problem P is alled stable at a point a ∈ domP if the orrespondene

P is upper semi-ontinuous at the point, i. e., for every neighborhood V of the set P [a] in
ImP , the preimage P−1[V ] is a neighborhood of the point a in domP . The problem P is

stable on a set D ⊆ domP if P is stable at eah point a ∈ D. The problem P is alled stable

or, more preisely, everywhere stable if P is stable on domP .

In the ase when a is an interior point of domP s

relative to domP (i. e., there exists an

open set G ⊆ DomP suh that a ∈ G∩domP ⊆ domP s

), the stability of the problem P at a
is equivalent to the ontinuity of the funtion P s

at a. Analogously, if a set D is inluded in

the interior of domP s

relative to domP (i. e., there exists an open set G ⊆ DomP suh that

D ⊆ G ∩ domP ⊆ domP s

), then the stability of the problem P on D is equivalent to the

ontinuity of the funtion P s

on D. In partiular, the stability of a uniquely solvable problem

is equivalent to its ontinuity.

1.10. A topologial problem P is alled orret (or, more preisely, loally orret) at

a point a ∈ DomP if a is an interior point of domP s

and the problem P is stable at a. In other
words, a problem is orret at a if, for data su�iently lose to a, the problem has a unique

solution, and the solution ontinuously depends on the data as it tends to a. A problem P
is said to be orret (or, more preisely, onditionally orret) on a set D ⊆ DomP if P is

orret at eah point a ∈ D. A problem P is alled orret if P is orret on DomP . Therefore,
the orretness of a problem means its unique solvability and stability (or, whih is the same,

ontinuity).

1.11. By a family (vi)i∈I we traditionally mean a funtion de�ned on I, and the term

vi denotes the value of the funtion at a point i ∈ I. Given an arbitrary family (Vi)i∈I , the
symbol

∏

i∈I Vi stands for the orresponding Cartesian produt, whih is the set of families

(vi)i∈I suh that vi ∈ Vi for all i ∈ I. If π : X →
∏

i∈I Vi, i ∈ I, and J ⊆ I, the funtions

πi : X → Vi, πJ : X →
∏

j∈J

Vj

are de�ned by the formulas

πi(x) := π(x)i ∈ Vi, πJ(x) := π(x)|J ∈
∏

j∈J

Vj , x ∈ X.

1.12. A parametrization of a setX is an arbitrary injetive mapping π de�ned on Domπ :=
domπ = X and ating into the Cartesian produt Imπ :=

∏

i∈I Vi of some family (Vi)i∈I .
In this ase, I is alled the set of parameters and denoted by Parπ, the elements i ∈ Parπ are

alled parameters, the set Imπi := Vi is alled the range of the parameter i, and πi(x) ∈ Imπi
is the value of the parameter i for an objet x ∈ X. The produt

∏

j∈J Vj is alled the range

of the set of parameters J ⊆ Par π and denoted by ImπJ .

Note that the range Imπi of a parameter i need not oinide with the set imπi = πi[X]
of the values of the parameter, i. e., the inlusion imπi ⊆ Imπi an be strit. In the ase of

equality imπi = Imπi, the range of the parameter i is alled exat.



Binary Correspondenes and the Inverse Problem of Chemial Kinetis 41

A set endowed with a parametrization is alled a parametrized set. By default, the

parametrization of X is denoted by π or, more expliitely, by πX
.

1.13. When onsidering a parametrization π of a topologial spae X, it is natural to

endow the set ImπJ , where J ⊆ Parπ, with the image of the topology of X with respet

to πJ , i. e., to assume open those subsets U ⊆ ImπJ whose preimage π−1
J [U ] is open in X.

In this ase, π ours a ontinuous mapping from X into Imπ and a topologial isomorphism

between X and imπ.

The ranges Imπi of the parameters i ∈ Par π usually have their own natural topologies

whih make the mappings πi ontinuous. Otherwise, Imπi an be endowed with the image of

the topology of X with respet to πi or with the topology indued from Imπ in whih the

open subsets of Imπi are the sets of the form {ui : u ∈ U}, where U is open in Imπ.

The ranges of parameters are often Banah spaes. In this ase, parametrized topologial

spaes are lose analogs of Banah bundles (see, for instane, [3℄), where the domain I
of a bundle V plays the role of the set of parameters, and the stalks V (i) are the ranges

of parameters i ∈ I.

1.14. A problem P is alled parametrized (or a problem with parameters) if its domain

of data DomP and domain of unknowns ImP are parametrized sets. Every problem an

be regarded parametrized if we assume that non-parametrized domains X are endowed with

trivial parametrizations having single parameter: π1(x) = x for all x ∈ X.

As is easily seen, the pair (πA, πB) is an isomorphism between a parametrized

problem (A,B,C) and the problem (A′, B′, C ′), where A′ = imπA
, B′ = imπB

, and

C ′ =
{(

πA(a), πB(b)
)

: (a, b) ∈ C
}

. Furthermore, if the problem (A,B,C) is topologial then
so are the problem (A′, B′, C ′) and the isomorphism (πA, πB).

1.15. Let π be a parametrization of a set A, a ∈ A, J ⊆ Par π, J ′ := Parπ\J . Denote by
Res

a
J(A) the problem (Im πJ , A,R

a
J ), where

Ra
J = {(v, b) : v ∈ ImπJ , b ∈ A, πJ(b) = v, πJ ′(b) = πJ ′(a)},

whih is the problem of reonstrution of an element of A by the values of the parameters J
on assuming �xed the values of the rest parameters. In the ase J = {i}, we write Resai (A)
instead of Res

a
{i}(A).

Sine π is injetive, the problem Res

a
J(A) is uniquely solvable on the set

domRes

a
J(A) = {πJ ′(b) : b ∈ A, πJ ′(b) = πJ ′(a)}

and its solution for every v ∈ domRes

a
J(A) is determined by the formula

Res

a
J(A)

s(v) = π−1 (v ⊗ πJ ′(a)) , where (v ⊗ w)i =

{

vi, if i ∈ J ;

wi, if i /∈ J.

1.16. Let π be a parametrization of a topologial spae A, a ∈ A, J ⊆ Par π. A set

of parameters J is loally free at the point a, if the domain of solvability domRes

a
J(A) of

the problem Res

a
J(A) is a neighborhood of the point πJ(a) in the topologial spae ImπJ .

Therefore, a loally free set of parameters realizes all su�iently small hanges of values with

the values of the rest parameters �xed. A parameter i is loally free at a if so is the set {i}.
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1.17. Let P be a parametrized topologial problem, a ∈ domP , and let J ⊆ Parπ,
where π := πdomP

. The problem P is stable at the point a with respet to J , if the problem
P ◦ ResaJ(domP ) is stable at the point πJ(a). Stability of a problem at a with respet to J
is usually onsidered in the ase when the set of parameters J is loally free at the point a.

The problem P is stable on a set D ⊆ domP with respet to J , if P is stable at eah point

a ∈ D with respet to J . The problem P is stable with respet to J if P is stable on domP
with respet to J . In the ase J = {i}, the term stability with respet to the parameter i
is used.

If the natural topology on im πJ is onsidered and a is an interior point of domP s

relative

to domP , the stability of a uniquely solvable problem P at the point a with respet to J
is equivalent to the ontinuity at a of the funtion

v ∈ πJ [domR] 7→ P s (Rs(v)) , where R := Res

a
J(DomP ).

The latter, in its turn, means that the solution P s(b) ontinuously depends on the values

πJ(b) of the parameters J as πJ(b) tend to πJ(a) with the equality πJ ′(b) = πJ ′(a) preserved.

1.18. Let P be a parametrized topologial problem, i ∈ Parπ. The problem P is alled

a �problem with small parameter i � if Imπi ⊆ R, the number 0 is a limit point of Imπi, and
a question is under onsideration about any asymptoti behavior of P for the values of i lose
to 0, for instane, about the stability of P with respet to i at a point a with πi(a) = 0.

2. The inverse problem of hemial kinetis

As an illustration, we onsider a singularly perturbed system of ordinary di�erential

equations whih arises in modeling ertain proesses of hemial kinetis and burning (see,

for instane, [4, 5℄). Within the study of the orresponding inverse problem, a riterion will be

established for linear independene of funtions in terms of �nite sets of their values (see 2.5).

2.1. Suppose that m,n ∈ N, X := R
m
, Y is a domain in R

n
, T := R, 0 < ε0 ∈ R. Put

E := {ε ∈ R : 0 6 ε 6 ε0}, F := C(X × Y × T × E, Rm), G := C(X × Y × T × E, Rn).

Consider the problem P with domain of data DomP = F ×G×E, domain of unknowns

ImP = C1(T,X) ×C1(T, Y ), and ondition

P ((f, g, ε), (x, y)) ⇔

{

ẋ(t) = f(x(t), y(t), t, ε),

ε ẏ(t) = g(x(t), y(t), t, ε)
for all t ∈ T,

where f ∈ F , g ∈ G, ε ∈ E, x ∈ C1(T,X), y ∈ C1(T, Y ).

Solution of the problem P is based on the method of integral manifolds (see [6�8℄),

a onvenient tool for studying multidimensional singularly perturbed systems of di�erential

equations whih makes it possible to lower the dimension of the system under study.

In the problem P , the number ε plays the role of �small parameter� thus splitting the

system into �slow� and �fast� subsystems:

ẋ(t) = f(x(t), y(t), t, ε) and ε ẏ(t) = g(x(t), y(t), t, ε).

Solution of P in a sense redues to solving the so alled degenerate system whih is obtained

from the initial system by putting the parameter ε equal to zero. This is justi�ed by the

results of A. N. Tikhonov (see, for instane, [9℄) on passing to a solution to the degenerate

problem as a small parameter tends to zero.
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2.2. The inverse problem to P onsists in �nding the unknown funtions on the right-

hand side of the system, given some data on the solution to the diret problem P . The lose
onnetion of the initial problem with the degenerate system motivates the study of the ase

ε = 0. We additionally assume that the �slow surfae� de�ned by the equation

g
(

x, y, t, 0
)

= 0

onsists of a single sheet (with respet to the dependene of y on x) and that the funtion

g ∈ G meets the ondition of the impliit funtion theorem, whih fat allows us to replae

the equation

g(x(t), y(t), t, 0) = 0

by the equivalent equation of the form

y(t) = h(x(t), t).

We also assume that the right-hand side f of the main di�erential equation is a polynomial

(whih is natural for problems of hemial kinetis).

So, onsider the partial ase of the problem P in whih m = n = 1, E = {0}, and the

funtions f ∈ F are polynomials in two variables of degree at most p ∈ N:

f(x, y, t, ε) =
∑

(i,j)∈K(p)

γij x
iyj,

where γij ∈ R, (i, j) ∈ K(p),

K(p) := {(i, j) : 0 6 i, j ∈ Z, i+ j 6 p} .

Introdue the notation

κ(p) :=
(p + 1)(p + 2)

2

for the number of elements of the set K(p) and �x an arbitrary enumeration

K(p) =
{

(i1, j1), (i2, j2), . . . ,
(

iκ(p), jκ(p)
)}

.

Therefore, the expression

∑κ(p)
k=1 γk x

ikyjk is the general form of a polynomial in two variables

x, y of degree at most p.

As a result of the above agreements, we arrive at the problem Q with domain of data

DomQ = R
κ(p)

, domain of unknowns ImQ = C1(R)2, and ondition

Q
(

γ, (x, y)
)

⇔











ẋ(t) =
κ(p)
∑

k=1

γk x(t)
ik y(t)jk ,

y(t) = h(x(t), t)

for all t ∈ R,

where γ1, γ2, . . . , γκ(p) ∈ R, x, y ∈ C1(R), h ∈ C1(R2).

2.3. The formal inverse problem Q−1
, whih has pairs of funtions (x, y) ∈ C1(R)2 as

data, is very simple and impratial. For representing the domain of data, �nite olletions

of the values of funtions or their derivatives are more adequate than everywhere de�ned

funtions. The orresponding orretion of the inverse problem is realized by omposition of
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the problem Q−1
and the auxiliary problem R with domain of data DomR = (Rκ(p))3, domain

of unknowns ImR = C1(R)2, and ondition

R ((τ, α, β), (x, y)) ⇔

{

x(τ1) = α1, x(τ2) = α2, . . . , x(τκ(p)) = ακ(p),

ẋ(τ1) = β1, ẋ(τ2) = β2, . . . , ẋ(τκ(p)) = βκ(p),

where τ, α, β ∈ R
κ(p)

, x, y ∈ C1(R).

As ompared to the formal inverse Q−1
, the omposition Q−1 ◦ R is more pratial and

amounts to the following problem: Given τ, α, β ∈ R
κ(p)

, �nd the oe�ients γ ∈ R
κ(p)

for

whih there exist funtions x, y ∈ C1(R) subjet to the ondition































x(τ1) = α1, x(τ2) = α2, . . . , x(τκ(p)) = ακ(p),

ẋ(τ1) = β1, ẋ(τ2) = β2, . . . , ẋ(τκ(p)) = βκ(p),

ẋ(t) =
κ(p)
∑

k=1

γk x(t)
ik y(t)jk for all t ∈ R,

y(t) = h
(

x(t), t
)

for all t ∈ R.

2.4. The following assertion an be proven for arbitrary p ∈ N in the same way as the

ase p = 1 whih is onsidered in [10, 11℄.

Theorem. If τ, α ∈ R
κ(p)

meet the ondition

∆(τ, α) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

αi1
1 h(α1, τ1)

j1 αi2
1 h(α1, τ1)

j2 . . . α
iκ(p)
1 h(α1, τ1)

jκ(p)

αi1
2 h(α2, τ2)

j1 αi2
2 h(α2, τ2)

j2 . . . α
iκ(p)
2 h(α2, τ2)

jκ(p)

. . . . . . . . . . . .

αi1
κ(p) h(ακ(p), τκ(p))

j1 αi2
κ(p) h(ακ(p), τκ(p))

j2 . . . α
iκ(p)

κ(p) h(ακ(p), τκ(p))
jκ(p)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0,

then, given arbitrary β ∈ R
κ(p)

, the problem Q−1◦R is uniquely solvable for the data (τ, α, β),
and its solution (γ1, γ2, . . . , γκ(p)) = (Q−1◦R)s(τ, α, β) an be alulated by Cramer's formulas

γk =
∆k(τ, α, β)

∆(τ, α)
, k = 1, 2, . . . , κ(p),

where ∆k(τ, α, β) is the determinant of the matrix formed from the above matrix by replaing

the kth olumn

(

αik
1 h(α1, τ1)

jk , αik
2 h(α2, τ2)

jk , . . . , αik
κ(p) h(ακ(p), τκ(p))

jk
)

with the olumn

β = (β1, β2, . . . , βκ(p)).

2.5. The following riterion lari�es the ase in whih there exist numbers τ1, . . . , τκ(p)
satisfying the hypothesis of Theorem 2.4.

Theorem. Let n ∈ N, let T be an arbitrary set, and let ϕi : T → R, i = 1, . . . , n.
The family of funtions ϕ1, . . . , ϕn is linearly independent in the vetor spae R

T
if and only

if there are points t1, . . . , tn ∈ T satisfying the ondition

∣

∣

∣

∣

∣

∣

∣

∣

ϕ1(t1) ϕ2(t1) . . . ϕn(t1)
ϕ1(t2) ϕ2(t2) . . . ϕn(t2)
. . . . . . . . . . . .

ϕ1(tn) ϕ2(tn) . . . ϕn(tn)

∣

∣

∣

∣

∣

∣

∣

∣

6= 0 . (1)
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⊳ For onveniene, introdue a notation for the matrix in (1):

Mn(ϕ1, . . . , ϕn; t1, . . . , tn) :=









ϕ1(t1) ϕ2(t1) . . . ϕn(t1)
ϕ1(t2) ϕ2(t2) . . . ϕn(t2)
. . . . . . . . . . . .

ϕ1(tn) ϕ2(tn) . . . ϕn(tn)









.

The ase n = 1 is trivial: if {ϕ1} is linearly independent then ϕ1 6= 0 and, hene, for some
point t1 ∈ T we have ϕ1(t1) 6= 0, i. e., |M1(ϕ1; t1)| 6= 0.

Let n ∈ N and assume that for every linearly independent family ϕ1, . . . , ϕn : T → R

there exist points t1, . . . , tn ∈ T satisfying (1). Now onsider a linearly independent family

ϕ1, . . . , ϕn, ϕn+1 : T → R. By the indution hypothesis, there are points t1, . . . , tn ∈ T suh

that the matrix

M := Mn(ϕ1, . . . , ϕn; t1, . . . , tn)

is invertible. We are to �nd a point t ∈ T whih ensures invertibility of the matrix

M(t) := Mn+1(ϕ1, . . . , ϕn, ϕn+1; t1, . . . , tn, t).

Assume to the ontrary that |M(t)| = 0 for all t ∈ T . Then, for eah t ∈ T , there is a tuple
0 6=

(

α1(t), . . . , αn+1(t)
)

∈ R
n+1

satisfying the ondition

M(t)
(

α1(t), . . . , αn+1(t)
)

= 0

or, whih is the same,























ϕ1(t1)α1(t) + · · ·+ ϕn(t1)αn(t) + ϕn+1(t1)αn+1(t) = 0,

ϕ1(t2)α1(t) + · · ·+ ϕn(t2)αn(t) + ϕn+1(t2)αn+1(t) = 0,

. . . ,

ϕ1(tn)α1(t) + · · ·+ ϕn(tn)αn(t) + ϕn+1(tn)αn+1(t) = 0,

(2)

ϕ1(t)α1(t) + · · · + ϕn(t)αn(t) + ϕn+1(t)αn+1(t) = 0. (3)

The subsystem (2) is equivalent to the equality

M(α1(t), . . . , αn(t)) + αn+1(t)(ϕn+1(t1), . . . , ϕn+1(tn)) = 0

whih implies

(α1(t), . . . , αn(t)) = −αn+1(t)M
−1 (ϕn+1(t1), . . . , ϕn+1(tn)) . (4)

Due to (4), in the ase αn+1(t) = 0 we would have α1(t) = · · · = αn+1(t) = 0, whih
ontradits the ondition (α1(t), . . . , αn+1(t)) 6= 0. Consequently, αn+1(t) 6= 0 and

(

α1(t)

αn+1(t)
, . . . ,

αn(t)

αn+1(t)

)

= −M−1 (ϕn+1(t1), . . . , ϕn+1(tn)) . (5)

Aording to (5), the numbers β1 :=
α1(t)

αn+1(t)
, . . . , βn := αn(t)

αn+1(t)
do not depend on t. It remains

to observe that (3) implies

β1ϕ1(t) + · · ·+ βnϕn(t) + ϕn+1(t) = 0 for all t ∈ T

ontrary to the linear independene of the family ϕ1, . . . , ϕn, ϕn+1. ⊲
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2.6. Theorems 2.4 and 2.5 diretly imply the following ondition for unique solvability of

the �orreted inverse problem� Q−1 ◦R.

Theorem. Let x ∈ C1(R), h ∈ C1(R2). If the family of funtions

t 7→ x(t)ik h(x(t), t)jk , k = 1, 2, . . . , κ(p),

is linearly independent in the vetor spae R
R
then there exist τ1, . . . , τκ(p) ∈ R suh that,

for all β1, . . . , βκ(p) ∈ R, the problem Q−1 ◦ R is uniquely solvable for the data τ1, . . . , τκ(p),
x(τ1), . . . , x(τκ(p)), β1, . . . , βκ(p).
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Àííîòàöèÿ. Ïîêàçàíî, êàê áèíàðíûå ñîîòâåòñòâèÿ ìîãóò áûòü èñïîëüçîâàíû äëÿ ïðîñòîé �îðìà-

ëèçàöèè ïîíÿòèÿ çàäà÷è, îïðåäåëåíèÿ îñíîâíûõ êîìïîíåíòîâ çàäà÷, èõ ñâîéñòâ è êîíñòðóêöèé. Â ÷àñò-

íîñòè, ïðåäëîæåíà �îðìàëèçàöèÿ ñëåäóþùèõ ïîíÿòèé: óñëîâèå, äàííûå, èñêîìûå è ðåøåíèÿ çàäà÷è,

ðàçðåøèìîñòü è îäíîçíà÷íàÿ ðàçðåøèìîñòü, îáðàòíàÿ çàäà÷à, êîìïîçèöèÿ è îãðàíè÷åíèå çàäà÷, èçîìîð-

�èçì ìåæäó çàäà÷àìè. �àññìîòðåíû òîïîëîãè÷åñêèå çàäà÷è è ñâÿçàííûå ñ íèìè ïîíÿòèÿ óñòîé÷èâîñòè

è êîððåêòíîñòè. Óêàçàíà ñâÿçü ìåæäó óñòîé÷èâîñòüþ è íåïðåðûâíîñòüþ îäíîçíà÷íî ðàçðåøèìîé òîïî-

ëîãè÷åñêîé çàäà÷è. Äàíî îïðåäåëåíèå ïàðàìåòðèçàöèè ìíîæåñòâà. Ââåäåíû ïîíÿòèÿ ïàðàìåòðèçîâàííîé

çàäà÷è, çàäà÷è âîññòàíîâëåíèÿ îáúåêòà ïî çíà÷åíèÿì ïàðàìåòðîâ, à òàêæå ïîíÿòèÿ ëîêàëüíî ñâîáîäíîãî

íàáîðà ïàðàìåòðîâ è óñòîé÷èâîñòè îòíîñèòåëüíî íàáîðà ïàðàìåòðîâ.

Â êà÷åñòâå èëëþñòðàöèè ðàññìîòðåíà ñèíãóëÿðíî âîçìóùåííàÿ ñèñòåìà îáûêíîâåííûõ äè��åðåíöèàëü-

íûõ óðàâíåíèé, îïèñûâàþùàÿ ïðîöåññ õèìè÷åñêîé êèíåòèêè è ãîðåíèÿ. Äëÿ òàêîé ñèñòåìû ñ�îðìóëè-

ðîâàíû ïðÿìàÿ è îáðàòíàÿ çàäà÷à. Èçó÷àåìûé êëàññ çàäà÷ ðàñøèðåí çà ñ÷åò ðàññìîòðåíèÿ ìíîãî÷ëåíîâ

ïðîèçâîëüíîé ñòåïåíè â êà÷åñòâå ïðàâûõ ÷àñòåé äè��åðåíöèàëüíûõ óðàâíåíèé. Ïîêàçàíî, êàê îáðàò-

íàÿ çàäà÷à õèìè÷åñêîé êèíåòèêè ìîæåò áûòü ñêîððåêòèðîâàíà è ïðèáëèæåíà ê ïðàêòèêå ïîñðåäñòâîì

êîìïîçèöèè ñ ïðîñòîé âñïîìîãàòåëüíîé çàäà÷åé, ðåàëèçóþùåé ñâÿçü ìåæäó �óíêöèÿìè è êîíå÷íûìè

íàáîðàìè èçìåðÿåìûõ ÷èñëîâûõ õàðàêòåðèñòèê. Ïðèâåäåíû �îðìóëû ðåøåíèÿ è óêàçàíû óñëîâèÿ îä-

íîçíà÷íîé ðàçðåøèìîñòè ñêîððåêòèðîâàííîé îáðàòíîé çàäà÷è. Â ðàìêàõ èññëåäîâàíèÿ ðàçðåøèìîñòè

ïîëó÷åí êðèòåðèé ëèíåéíîé íåçàâèñèìîñòè âåùåñòâåííûõ �óíêöèé â òåðìèíàõ êîíå÷íûõ íàáîðîâ èõ

çíà÷åíèé. Ñ ïîìîùüþ óñòàíîâëåííîãî êðèòåðèÿ óòî÷íåíà ðåàëèçóåìîñòü óñëîâèÿ îäíîçíà÷íîé ðàçðåøè-

ìîñòè îáðàòíîé çàäà÷è õèìè÷åñêîé êèíåòèêè.

Êëþ÷åâûå ñëîâà: áèíàðíîå ñîîòâåòñòâèå, îáðàòíàÿ çàäà÷à, ðàçðåøèìîñòü, êîìïîçèöèÿ, óñòîé÷è-

âîñòü, êîððåêòíîñòü, äè��åðåíöèàëüíîå óðàâíåíèå, õèìè÷åñêàÿ êèíåòèêà, ëèíåéíàÿ íåçàâèñèìîñòü.
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