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Abstract. Let M be a von Neumann algebra equipped with a faithful normal finite trace τ , and let
S (M, τ ) be an ∗-algebra of all τ -measurable operators affiliated with M. For x ∈ S (M, τ ) the generalized
singular value function µ(x) : t → µ(t;x), t > 0, is defined by the equality µ(t;x) = inf{‖xp‖M :
p2 = p∗ = p ∈ M, τ (1 − p) 6 t}. Let ψ be an increasing concave continuous function on [0,∞) with
ψ(0) = 0, ψ(∞) = ∞, and let Λψ(M, τ ) =

{

x ∈ S (M, τ ) : ‖x‖ψ =
∫

∞

0
µ(t;x)dψ(t) <∞

}

be the non-
commutative Lorentz space. A surjective (not necessarily linear) mapping V : Λψ(M, τ ) → Λψ(M, τ ) is
called a surjective 2-local isometry, if for any x, y ∈ Λψ(M, τ ) there exists a surjective linear isometry
Vx,y : Λψ(M, τ ) → Λψ(M, τ ) such that V (x) = Vx,y(x) and V (y) = Vx,y(y). It is proved that in the case
when M is a factor, every surjective 2-local isometry V : Λψ(M, τ ) → Λψ(M, τ ) is a linear isometry.
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1. Introduction

Let H be a complex separable infinite-dimensional Hilbert space, let (CE , ‖ · ‖CE )
be a Banach ideal of compact linear operators in H generated by symmetric sequence space
(E, ‖ · ‖E) ⊂ c0, and let V be a surjective 2-local isometry on CE, that is, V : CE → CE
is a surjective (not necessarily linear) mapping such that for any x, y ∈ CE there exists
a surjective linear isometry Vx,y on CE for which V (x) = Vx,y(x) and V (y) = Vx,y(y). In the
papers [1, 2] it is shown that in the case when CE is separable or has the Fatou property,
CE 6= Cl2 , every surjective 2-local isometry on CE is a linear isometry. In the proof of this
statement is essentially used explicit description of all surjective linear isometries on CE [1, 3].

Banach ideals (CE , ‖ · ‖CE ) of compact linear operators are examples of non-commutative
symmetric spaces E(M, τ) of measurable operators affiliated with a von Neumann algebra M
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equipped with a faithful normal semifinite trace τ (see, for example, [4, Ch. 2, § 2.5]).
It is natural to expect that for these non-commutative symmetric spaces with the Fatou
property, every surjective 2-local isometry V : E(M, τ) → E(M, τ) is a linear map.
Unfortunately, the method of proof of a similar statement for Banach ideals (CE , ‖ · ‖CE ) can
not be applied here, since there is no description of surjective linear isometries V : E(M, τ) →
E(M, τ). At the same time, in the case of non-commutative Lorentz and Marcinkiewicz
spaces, such a description of surjective linear isometries was obtained in the paper [5]. Using
this description, we obtain the following description of surjective 2-local isometries of non-
commutative Lorentz spaces.

Theorem 1. Let M be an arbitrary factor with a faithful normal finite trace τ , and let

(Λψ(M, τ), ‖·‖ψ) be a non-commutative Lorentz space. Then every surjective 2-local isometry

V : Λψ(M, τ) → Λϕ(M, τ) is a linear isometry.

2. Preliminaries

Let H be an infinite-dimensional complex Hilbert space, let B(H) be the C∗-algebra
of all bounded linear operators in H, and let 1 be the unit in B(H). Let M ⊆ B(H)
be a von Neumann algebra on Hilbert space H equipped with a faithful normal semifinite
trace τ (see, for example, [6]). A linear operator x : D (x) → H, where the domain D (x) of x
is a linear subspace of H, is said to be affiliated with M if yx ⊆ xy for all y ∈ M′, where M′

is the commutant of M. A linear operator x : D (x) → H is termed measurable with respect
to M if x is closed, densely defined, affiliated with M and there exists a sequence {pn}

∞
n=1

in the lattice P (M) of all projections of M, such that pn ↑ 1, pn(H) ⊆ D (x) and 1 − pn
is a finite projection (with respect to M) for all n. The collection S (M) of all measurable
operators with respect to M is a unital ∗-algebra with respect to strong sums and products.

Let x be a self-adjoint operator affiliated with M and let {ex} be a spectral measure of x.
It is well known that if x is a closed operator affiliated with M with the polar decomposition
x = u|x|, then u ∈ M and e ∈ M for all projections e ∈ {e|x|}. Moreover, x ∈ S(M) if and
only if x is closed, densely defined, affiliated with M and e|x|(λ,∞) is a finite projection for
some λ > 0.

An operator x ∈ S (M) is called τ -measurable if there exists a sequence {pn}
∞
n=1 in P (M)

such that pn ↑ 1, pn (H) ⊆ D (x) and τ(1 − pn) < ∞ for all n. The collection S (M, τ) of
all τ -measurable operators is a unital ∗-subalgebra of S (M). It is well known that a linear
operator x belongs to S (M, τ) if and only if x ∈ S(M) and there exists λ = λ(x) > 0 such
that τ(e|x|(λ,∞)) <∞.

The generalized singular value function µ(x) : t → µ(t;x), t > 0, of the operator x ∈
S (M, τ) is defined by setting [7]

µ(t;x) = inf
{
‖xp‖ : p ∈ P (M) , τ(1− p) 6 t

}
= inf

{
s > 0 : τ(e|x|(s,∞)) 6 t

}
.

A non-zero linear subspace E(M, τ) ⊂ S (M, τ) with the Banach norm ‖·‖E(M,τ) is called
a symmetric space if the conditions

x ∈ E(M, τ), y ∈ S (M, τ) , µt(y) 6 µt(x) for all t > 0,

imply that y ∈ E(M, τ) and ‖y‖E(M,τ) 6 ‖x‖E(M,τ).
It is known that in the case τ(1) <∞ it is true

S (M) = S (M, τ) and M ⊆ E(M, τ) ⊆ L1(M, τ)
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for each symmetric space E(M, τ), where

L1(M, τ) =

{
x ∈ S (M, τ) : ‖x‖1 =

∞∫

0

µt(x) dt <∞

}
.

In addition,

M· E(M, τ) ·M ⊆ E(M, τ),

and
‖axb‖E(M,τ) 6 ‖a‖M · ‖b‖M · ‖x‖E(M,τ)

for all a, b ∈ M, x ∈ E(M, τ).
Let ψ be an increasing concave continuous function on [0,∞) with ψ(0) = 0, ψ(∞) =

lim
t→∞

ψ(t) = ∞, and let

Λψ(M, τ) =

{
x ∈ S (M, τ) : ‖x‖ψ =

∞∫

0

µ(t;x) dψ(t) <∞

}

be the non-commutative Lorentz space. It is known that (Λψ(M, τ), ‖ · ‖ψ) is a symmetric
space [8], and the norm ‖·‖ψ has the Fatou property, that is, the conditions 0 6 xk ∈ Λψ(M, τ)
for all k, and supk>1 ‖xk‖ψ <∞, imply that there exists 0 6 x ∈ Λψ(M, τ) such that xk ↑ x
and ‖x‖ψ = supk>1 ‖xk‖ψ.

Denote by Mψ(M, τ) the set of all x ∈ S (M, τ) for which

‖x‖Mψ
= sup

t>0

1

ψ(t)

t∫

0

µ(s;x) ds

is finite. The set Mψ(M, τ) with the norm ‖ · ‖Mψ
is a symmetric space which is called

a Marcinkiewicz space.
Denote by M0

ψ(M, τ) the closure of M in Mψ(M, τ). It is known [9] that the conjugate
space of (Λψ(M, τ), ‖ · ‖ψ) is identified with (Mψ(M, τ), ‖ · ‖Mψ

), and the conjugate space
of (M0

ψ(M, τ), ‖ · ‖Mψ
), under the condition lim

t→0

t
ψ(t) = 0, is identified with(Λψ(M, τ), ‖ · ‖ψ).

The duality in these pairs of spaces is realized via the bilinear form (x, y) = τ(xy). It should
be pointed out that the spaces (Λψ(M, τ), ‖·‖ψ), (Mψ(M, τ), ‖·‖Mψ

) and (M0
ψ(M, τ), ‖·‖Mψ

)
are symmetric spaces [4, Ch. 2, § 2.6], [8].

3. Isometries of Non-Commutative Lorentz Spaces

Let M ⊆ B(H) be a von Neumann algebra on Hilbert space H. A linear bijective mapping
Φ: M → M is called a Jordan isomorphism if Φ(x2) = (Φ(x))2 and Φ(x∗) = (Φ(x))∗ for all
x ∈ M.

If Φ: M → M is a Jordan isomorphism, then there exists a central projection z ∈ M such
that Φz(x) = Φ(x) · z, x ∈ M, is an ∗-homomorphism, and Φz⊥(x) = Φ(x) · (1− z), x ∈ M ,
is an ∗-antihomomorphism (see, for example, [10, Ch. 3, § 3.2.1]). Consequently, if M is a factor
then a Jordan isomorphism Φ : M → M is an ∗-homomorphism or ∗-antihomomorphism.

If τ is a faithful normal finite trace on von Neumann algebra M then a Jordan isomorphism
Φ: M → M is continuous with respect to measure topology tτ generated by trace τ (see, for
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example, [11, Ch. 5, § 3, Proposition 1]). Therefore, Φ extends to a tτ -continuous Jordan
isomorphism Φ̃ : S (M, τ) → S (M, τ). In addition, if τ(Φ(x)) = τ(x) for all x ∈ M
then µ(t; Φ̃(x)) = µ(t;x) for all x ∈ S (M, τ), in particular, Φ̃(E(M, τ) = E(M, τ)) and
‖Φ̃(x)‖E(M,τ) = ‖x‖E(M,τ) for all x ∈ E(M, τ), that is, Φ̃ : E(M, τ) → E(M, τ) is a surjective
linear isometry for any symmetric space (E(M, τ), ‖ · ‖E(M,τ)).

Thus, it is true the following

Proposition 1. Let M be an arbitrary von Neumann algebra with a faithful normal finite

trace τ , and let Φ: M → M be a Jordan isomorphism such that τ(Φ(x)) = τ(x) for all x ∈ M.

Then for every symmetric space (E(M, τ), ‖ · ‖E(M,τ)) the mapping V : E(M, τ) → E(M, τ)

given by the equality V (x) = u · Φ̃(x) · v, x ∈ E(M, τ), u, v are unitary operators in M,

is a surjective linear isometry.

We need the following description of surjective linear isometries of the spaces
(Λψ(M, τ), ‖ · ‖ψ) and (M0

ψ(M, τ), ‖ · ‖Mψ
) [5, Theorems 5.1, 6.1].

Theorem 2. Let M be an arbitrary von Neumann algebra with a faithful normal finite

trace τ , and let V : Λψ(M, τ) → Λψ(M, τ) (respectively, V : M0
ψ(M, τ) → M0

ψ(M, τ))
be a surjective linear isometry. Then there exist uniquely an unitary operator u ∈ M and

a Jordan isomorphism Φ : M → M such that V (x) = u · Φ(x) and τ(Φ(x)) = τ(x) for all

x ∈ M.

4. Local Isometries of Non-Commutative Lorentz Spaces

Let (X, ‖ · ‖X) be an arbitrary Banach space over the field K of complex or real numbers.
A surjective (not necessarily linear) mapping T : X → X is called a surjective 2-local
isometry [2], if for any x, y ∈ X there exists a surjective linear isometry Vx,y : X → X

such that T (x) = Vx,y(x) and T (y) = Vx,y(y). It is clear that every surjective linear isometry
on X is a surjective 2-local isometry on X. In addition,

T (λx) = Vx,λx(λx) = λVx,λx(x) = λT (x)

for any x ∈ X and λ ∈ K.
Consequently, in order to establish linearity of a 2-local isometry T , it is sufficient to show

that T (x+ y) = T (x) + T (y) for all x, y ∈ X.
Since

‖T (x)− T (y)‖X = ‖Vx,y(x)− Vx,y(y)‖X = ‖x− y‖X for all x, y ∈ X,

it follows that T is continuous map on (X, ‖ · ‖X). In addition, in the case a real Banach
space X (K = R), every surjective 2-local isometry on X is a linear map (see Mazur–Ulam
Theorem [12, Ch. 1, § 1.3, Theorem 1.3.5.]). In the case a complex Banach space X (K = C),
this fact is not true.

Using the description of all surjective linear isometries on a separable Banach symmetric
ideal CE [3] (respectively, on a Banach symmetric ideal CE with Fatou property [1]), CE 6= Cl2 ,
in the papers [1, 2] it is proved that every surjective 2-local isometry T : CE → CE is a linear
isometry.

The following Theorem is a version of the above results for the spaces Λψ(M, τ) and
M0
ψ(M, τ).

Theorem 3. Let M be an arbitrary factor with a faithful normal finite trace τ , and let

T : Λψ(M, τ) → Λψ(M, τ) (respectively, T :M0
ψ(M, τ) →M0

ψ(M, τ)) be a surjective 2-local

isometry. Then T is a linear isometry.
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⊳ Fix x, y ∈ M and let Vx,y : Λψ(M, τ) → Λψ(M, τ) be a surjective isometry such
that T (x) = Vx,y(x) and T (y) = Vx,y(y). By Theorem 2, there exist uniquely an unitary
operator u ∈ M and a Jordan isomorphism Φ : M → M such that Vx,y(a) = u · Φ(a)
and τ(Φ(a)) = τ(a) for all a ∈ M. Since M is a factor it follows then Φ : M → M is an
∗-isomorphism or Φ is an ∗-anti-isomorphism.

We assume that Φ is an ∗-isomorphism (in the case when Φ is an ∗-anti-isomorphism,
the proof is similar).

We have

τ(T (x) · (T (y))∗) = τ(Vx,y(x) · (Vx,y(y))
∗)

= τ(u · Φ(x) · (u · Φ(y))∗) = τ(u · Φ(xy∗) · u∗) = τ(Φ(xy∗)) = τ(xy∗).

Consequently, τ(T (x) · (T (y))∗) = τ(xy∗) for all x, y ∈ M.
If x, y, z ∈ M, then

τ(T (x+ y) · (T (z))∗) = τ((x+ y)z∗), τ(T (x) · T (z)∗) = τ(xz∗),

τ(T (y) · T (z)∗) = τ(y · z∗).

Therefore
τ((T (x+ y)− T (x)− T (y)) · (T (z))∗) = 0

for all z ∈ M. Taking z = x+ y, z = x and z = y, we obtain

τ((T (x+ y)− T (x)− T (y) · ((T (x+ y)− T (x)− T (y))∗) = 0,

that is, T (x+ y) = T (x) + T (y) for all x, y ∈ M.
Since the Lorentz space Λψ(0,∞) of measurable functions on a semi-axis [0,∞) is separable

space [13, Ch. 2I, § 5], it follows that the non-commutative Lorentz (Λψ(M, τ), ‖ · ‖ψ) has
an order continuous norm [14, Proposition 3.6], that is, ‖xn‖ψ ↓ 0 whenever xn ∈ Λψ(M, τ)
and xn ↓ 0. Consequently, the factor M is dense in the space Λψ(M, τ). Since T is a continuous
mapping on Λψ(M, τ) it follows that T (x+ y) = T (x)+T (y) for all x, y ∈ Λψ(M, τ), that is,
T is a surjective linear isometry.

For the space M0
ψ(M, τ), the proof of the linearity of the surjective 2-local isometry

T :M0
ψ(M, τ) →M0

ψ(M, τ) repeats the previous proof. ⊲
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Аннотация. Пусть M алгебра фон Неймана с точным нормальным конечным следом τ , и пусть
S (M, τ ) инволютивная алгебра всех τ -измеримых операторов, присоединенных к алгебре M. Для опе-
ратора x ∈ S (M, τ ) невозрастающая перестановка µ(x) : t → µ(t;x), t > 0, определяется с помо-
щью равенства µ(t;x) = inf{‖xp‖M : p2 = p∗ = p ∈ M, τ (1 − p) 6 t}. Пусть ψ возрастающая
вогнутая непрерывная функция на [0,∞), для которой ψ(0) = 0, ψ(∞) = ∞. Пусть Λψ(M, τ ) =
{

x ∈ S (M, τ ) : ‖x‖ψ =
∫

∞

0
µ(t;x)dψ(t) < ∞

}

некоммутативное пространство Лоренца. Сюръективное
(не обязательно линейное) отображение V : Λψ(M, τ ) → Λψ(M, τ ) называется сюръективной 2-локаль-
ной изометрией, если для любых x, y ∈ Λψ(M, τ ) существует такая сюръективная линейная изометрия
Vx,y : Λψ(M, τ ) → Λψ(M, τ ), что V (x) = Vx,y(x) и V (y) = Vx,y(y). Доказано, что в случае, когда M
есть фактор, каждая сюръективная 2-локальная изометрия V : Λψ(M, τ ) → Λψ(M, τ ) есть линейная
изометрия.

Ключевые слова: измеримый оператор, пространство Лоренца, изометрия.
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