УДК 517.98 DOI 10.23671/VNC.2019.21.44595

2-LOCAL ISOMETRIES OF NON-COMMUTATIVE LORENTZ SPACES

A. A. Alimov¹, V. I. Chilin²

 ¹ Tashkent Institute of Design, Construction and Maintenance of Automobile Roads,
20 Amir Temur Av., Tashkent 100060, Uzbekistan,
² National University of Uzbekistan,
Vuzgorodok, Tashkent 100174, Uzbekistan
E-mail: alimovakrom63@yandex.ru,
vladimirchil@gmail.com, chilin@ucd.uz

Dedicated to E. I. Gordon on the occasion of his 70th birthday

Abstract. Let \mathcal{M} be a von Neumann algebra equipped with a faithful normal finite trace τ , and let $S(\mathcal{M},\tau)$ be an *-algebra of all τ -measurable operators affiliated with \mathcal{M} . For $x \in S(\mathcal{M},\tau)$ the generalized singular value function $\mu(x) : t \to \mu(t;x), t > 0$, is defined by the equality $\mu(t;x) = \inf\{||xp||_{\mathcal{M}} : p^2 = p^* = p \in \mathcal{M}, \tau(1-p) \leq t\}$. Let ψ be an increasing concave continuous function on $[0,\infty)$ with $\psi(0) = 0, \psi(\infty) = \infty$, and let $\Lambda_{\psi}(\mathcal{M},\tau) = \{x \in S(\mathcal{M},\tau) : ||x||_{\psi} = \int_0^{\infty} \mu(t;x) d\psi(t) < \infty\}$ be the non-commutative Lorentz space. A surjective (not necessarily linear) mapping $V : \Lambda_{\psi}(\mathcal{M},\tau) \to \Lambda_{\psi}(\mathcal{M},\tau)$ is called a surjective 2-local isometry, if for any $x, y \in \Lambda_{\psi}(\mathcal{M},\tau)$ there exists a surjective linear isometry $V_{x,y} : \Lambda_{\psi}(\mathcal{M},\tau) \to \Lambda_{\psi}(\mathcal{M},\tau)$ such that $V(x) = V_{x,y}(x)$ and $V(y) = V_{x,y}(y)$. It is proved that in the case when \mathcal{M} is a factor, every surjective 2-local isometry $V : \Lambda_{\psi}(\mathcal{M},\tau) \to \Lambda_{\psi}(\mathcal{M},\tau)$ is a linear isometry.

Key words: measurable operator, Lorentz space, isometry.

Mathematical Subject Classification (2010): 46L52, 46B04.

For citation: Alimov, A. A. and Chilin, V. I. 2-Local Isometries of Non-Commutative Lorentz Spaces, Vladikavkaz Math. J., 2019, vol. 21, no. 4, pp. 5–10. DOI: 10.23671/VNC.2019.21.44595.

1. Introduction

Let \mathcal{H} be a complex separable infinite-dimensional Hilbert space, let $(\mathcal{C}_E, \| \cdot \|_{\mathcal{C}_E})$ be a Banach ideal of compact linear operators in \mathcal{H} generated by symmetric sequence space $(E, \| \cdot \|_E) \subset c_0$, and let V be a surjective 2-local isometry on \mathcal{C}_E , that is, $V : \mathcal{C}_E \to \mathcal{C}_E$ is a surjective (not necessarily linear) mapping such that for any $x, y \in \mathcal{C}_E$ there exists a surjective linear isometry $V_{x,y}$ on \mathcal{C}_E for which $V(x) = V_{x,y}(x)$ and $V(y) = V_{x,y}(y)$. In the papers [1, 2] it is shown that in the case when \mathcal{C}_E is separable or has the Fatou property, $\mathcal{C}_E \neq \mathcal{C}_{l_2}$, every surjective 2-local isometry on \mathcal{C}_E is a linear isometry. In the proof of this statement is essentially used explicit description of all surjective linear isometries on \mathcal{C}_E [1, 3].

Banach ideals $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ of compact linear operators are examples of non-commutative symmetric spaces $\mathcal{E}(\mathcal{M}, \tau)$ of measurable operators affiliated with a von Neumann algebra \mathcal{M}

^{© 2019} Alimov, A. A. and Chilin, V. I.

equipped with a faithful normal semifinite trace τ (see, for example, [4, Ch.2, § 2.5]). It is natural to expect that for these non-commutative symmetric spaces with the Fatou property, every surjective 2-local isometry $V : \mathcal{E}(\mathcal{M},\tau) \to \mathcal{E}(\mathcal{M},\tau)$ is a linear map. Unfortunately, the method of proof of a similar statement for Banach ideals $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ can not be applied here, since there is no description of surjective linear isometries $V : \mathcal{E}(\mathcal{M},\tau) \to$ $\mathcal{E}(\mathcal{M},\tau)$. At the same time, in the case of non-commutative Lorentz and Marcinkiewicz spaces, such a description of surjective linear isometries was obtained in the paper [5]. Using this description, we obtain the following description of surjective 2-local isometries of noncommutative Lorentz spaces.

Theorem 1. Let \mathcal{M} be an arbitrary factor with a faithful normal finite trace τ , and let $(\Lambda_{\psi}(\mathcal{M},\tau), \|\cdot\|_{\psi})$ be a non-commutative Lorentz space. Then every surjective 2-local isometry $V : \Lambda_{\psi}(\mathcal{M},\tau) \to \Lambda_{\varphi}(\mathcal{M},\tau)$ is a linear isometry.

2. Preliminaries

Let \mathcal{H} be an infinite-dimensional complex Hilbert space, let $\mathcal{B}(\mathcal{H})$ be the C^* -algebra of all bounded linear operators in \mathcal{H} , and let **1** be the unit in $\mathcal{B}(\mathcal{H})$. Let $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra on Hilbert space \mathcal{H} equipped with a faithful normal semifinite trace τ (see, for example, [6]). A linear operator $x : \mathfrak{D}(x) \to \mathcal{H}$, where the domain $\mathfrak{D}(x)$ of xis a linear subspace of \mathcal{H} , is said to be *affiliated* with \mathcal{M} if $yx \subseteq xy$ for all $y \in \mathcal{M}'$, where \mathcal{M}' is the commutant of \mathcal{M} . A linear operator $x : \mathfrak{D}(x) \to \mathcal{H}$ is termed measurable with respect to \mathcal{M} if x is closed, densely defined, affiliated with \mathcal{M} and there exists a sequence $\{p_n\}_{n=1}^{\infty}$ in the lattice $\mathcal{P}(\mathcal{M})$ of all projections of \mathcal{M} , such that $p_n \uparrow \mathbf{1}, p_n(\mathcal{H}) \subseteq \mathfrak{D}(x)$ and $\mathbf{1} - p_n$ is a finite projection (with respect to \mathcal{M}) for all n. The collection $S(\mathcal{M})$ of all measurable operators with respect to \mathcal{M} is a unital *-algebra with respect to strong sums and products.

Let x be a self-adjoint operator affiliated with \mathcal{M} and let $\{e^x\}$ be a spectral measure of x. It is well known that if x is a closed operator affiliated with \mathcal{M} with the polar decomposition x = u|x|, then $u \in \mathcal{M}$ and $e \in \mathcal{M}$ for all projections $e \in \{e^{|x|}\}$. Moreover, $x \in S(\mathcal{M})$ if and only if x is closed, densely defined, affiliated with \mathcal{M} and $e^{|x|}(\lambda, \infty)$ is a finite projection for some $\lambda > 0$.

An operator $x \in S(\mathcal{M})$ is called τ -measurable if there exists a sequence $\{p_n\}_{n=1}^{\infty}$ in $\mathcal{P}(\mathcal{M})$ such that $p_n \uparrow \mathbf{1}, p_n(\mathcal{H}) \subseteq \mathfrak{D}(x)$ and $\tau(\mathbf{1} - p_n) < \infty$ for all n. The collection $S(\mathcal{M}, \tau)$ of all τ -measurable operators is a unital *-subalgebra of $S(\mathcal{M})$. It is well known that a linear operator x belongs to $S(\mathcal{M}, \tau)$ if and only if $x \in S(\mathcal{M})$ and there exists $\lambda = \lambda(x) > 0$ such that $\tau(e^{|x|}(\lambda, \infty)) < \infty$.

The generalized singular value function $\mu(x) : t \to \mu(t;x), t > 0$, of the operator $x \in S(\mathcal{M}, \tau)$ is defined by setting [7]

$$\mu(t;x) = \inf \left\{ \|xp\| : p \in \mathcal{P}(\mathcal{M}), \ \tau(\mathbf{1}-p) \leq t \right\} = \inf \left\{ s > 0 : \ \tau(e^{|x|}(s,\infty)) \leq t \right\}.$$

A non-zero linear subspace $\mathcal{E}(\mathcal{M},\tau) \subset S(\mathcal{M},\tau)$ with the Banach norm $\|\cdot\|_{\mathcal{E}(\mathcal{M},\tau)}$ is called a symmetric space if the conditions

$$x \in \mathcal{E}(\mathcal{M}, \tau), \quad y \in S(\mathcal{M}, \tau), \quad \mu_t(y) \leq \mu_t(x) \text{ for all } t > 0,$$

imply that $y \in \mathcal{E}(\mathcal{M}, \tau)$ and $\|y\|_{\mathcal{E}(\mathcal{M}, \tau)} \leq \|x\|_{\mathcal{E}(\mathcal{M}, \tau)}$

It is known that in the case $\tau(1) < \infty$ it is true

$$S(\mathcal{M}) = S(\mathcal{M}, \tau)$$
 and $\mathcal{M} \subseteq \mathcal{E}(\mathcal{M}, \tau) \subseteq L_1(\mathcal{M}, \tau)$

for each symmetric space $\mathcal{E}(\mathcal{M}, \tau)$, where

$$L_1(\mathcal{M},\tau) = \left\{ x \in S\left(\mathcal{M},\tau\right) : \|x\|_1 = \int_0^\infty \mu_t(x) \, dt < \infty \right\}.$$

In addition,

$$\mathcal{M} \cdot \mathcal{E}(\mathcal{M}, \tau) \cdot \mathcal{M} \subseteq \mathcal{E}(\mathcal{M}, \tau),$$

and

$$\|axb\|_{\mathcal{E}(\mathcal{M},\tau)} \leqslant \|a\|_{\mathcal{M}} \cdot \|b\|_{\mathcal{M}} \cdot \|x\|_{\mathcal{E}(\mathcal{M},\tau)}$$

for all $a, b \in \mathcal{M}, x \in \mathcal{E}(\mathcal{M}, \tau)$.

Let ψ be an increasing concave continuous function on $[0,\infty)$ with $\psi(0) = 0$, $\psi(\infty) = \lim_{t \to \infty} \psi(t) = \infty$, and let

$$\Lambda_{\psi}(\mathcal{M},\tau) = \left\{ x \in S\left(\mathcal{M},\tau\right) : \|x\|_{\psi} = \int_{0}^{\infty} \mu(t;x) \, d\psi(t) < \infty \right\}$$

be the non-commutative Lorentz space. It is known that $(\Lambda_{\psi}(\mathcal{M},\tau), \|\cdot\|_{\psi})$ is a symmetric space [8], and the norm $\|\cdot\|_{\psi}$ has the Fatou property, that is, the conditions $0 \leq x_k \in \Lambda_{\psi}(\mathcal{M},\tau)$ for all k, and $\sup_{k\geq 1} \|x_k\|_{\psi} < \infty$, imply that there exists $0 \leq x \in \Lambda_{\psi}(\mathcal{M},\tau)$ such that $x_k \uparrow x$ and $\|x\|_{\psi} = \sup_{k\geq 1} \|x_k\|_{\psi}$.

Denote by $M_{\psi}(\mathcal{M}, \tau)$ the set of all $x \in S(\mathcal{M}, \tau)$ for which

$$\|x\|_{M_{\psi}} = \sup_{t>0} \frac{1}{\psi(t)} \int_{0}^{t} \mu(s;x) \, ds$$

is finite. The set $M_{\psi}(\mathcal{M}, \tau)$ with the norm $\|\cdot\|_{M_{\psi}}$ is a symmetric space which is called a *Marcinkiewicz space*.

Denote by $M_{\psi}^{0}(\mathcal{M}, \tau)$ the closure of \mathcal{M} in $M_{\psi}(\mathcal{M}, \tau)$. It is known [9] that the conjugate space of $(\Lambda_{\psi}(\mathcal{M}, \tau), \|\cdot\|_{\psi})$ is identified with $(M_{\psi}(\mathcal{M}, \tau), \|\cdot\|_{M_{\psi}})$, and the conjugate space of $(M_{\psi}^{0}(\mathcal{M}, \tau), \|\cdot\|_{M_{\psi}})$, under the condition $\lim_{t\to 0} \frac{t}{\psi(t)} = 0$, is identified with $(\Lambda_{\psi}(\mathcal{M}, \tau), \|\cdot\|_{\psi})$. The duality in these pairs of spaces is realized via the bilinear form $(x, y) = \tau(xy)$. It should be pointed out that the spaces $(\Lambda_{\psi}(\mathcal{M}, \tau), \|\cdot\|_{\psi}), (M_{\psi}(\mathcal{M}, \tau), \|\cdot\|_{M_{\psi}})$ and $(M_{\psi}^{0}(\mathcal{M}, \tau), \|\cdot\|_{M_{\psi}})$ are symmetric spaces [4, Ch. 2, § 2.6], [8].

3. Isometries of Non-Commutative Lorentz Spaces

Let $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra on Hilbert space \mathcal{H} . A linear bijective mapping $\Phi \colon \mathcal{M} \to \mathcal{M}$ is called a Jordan isomorphism if $\Phi(x^2) = (\Phi(x))^2$ and $\Phi(x^*) = (\Phi(x))^*$ for all $x \in \mathcal{M}$.

If $\Phi: \mathcal{M} \to \mathcal{M}$ is a Jordan isomorphism, then there exists a central projection $z \in \mathcal{M}$ such that $\Phi_z(x) = \Phi(x) \cdot z, x \in \mathcal{M}$, is an *-homomorphism, and $\Phi_{z^{\perp}}(x) = \Phi(x) \cdot (\mathbf{1} - z), x \in \mathcal{M}$, is an *-antihomomorphism (see, for example, [10, Ch. 3, § 3.2.1]). Consequently, if \mathcal{M} is a factor then a Jordan isomorphism $\Phi: \mathcal{M} \to \mathcal{M}$ is an *-homomorphism or *-antihomomorphism.

If τ is a faithful normal finite trace on von Neumann algebra \mathcal{M} then a Jordan isomorphism $\Phi \colon \mathcal{M} \to \mathcal{M}$ is continuous with respect to measure topology t_{τ} generated by trace τ (see, for

example, [11, Ch. 5, §3, Proposition 1]). Therefore, Φ extends to a t_{τ} -continuous Jordan isomorphism $\tilde{\Phi}: S(\mathcal{M}, \tau) \to S(\mathcal{M}, \tau)$. In addition, if $\tau(\Phi(x)) = \tau(x)$ for all $x \in \mathcal{M}$ then $\mu(t; \tilde{\Phi}(x)) = \mu(t; x)$ for all $x \in S(\mathcal{M}, \tau)$, in particular, $\tilde{\Phi}(\mathcal{E}(\mathcal{M}, \tau) = \mathcal{E}(\mathcal{M}, \tau))$ and $\|\tilde{\Phi}(x)\|_{\mathcal{E}(\mathcal{M},\tau)} = \|x\|_{\mathcal{E}(\mathcal{M},\tau)}$ for all $x \in \mathcal{E}(\mathcal{M},\tau)$, that is, $\tilde{\Phi}: \mathcal{E}(\mathcal{M},\tau) \to \mathcal{E}(\mathcal{M},\tau)$ is a surjective linear isometry for any symmetric space $(\mathcal{E}(\mathcal{M},\tau), \|\cdot\|_{\mathcal{E}(\mathcal{M},\tau)})$.

Thus, it is true the following

Proposition 1. Let \mathcal{M} be an arbitrary von Neumann algebra with a faithful normal finite trace τ , and let $\Phi \colon \mathcal{M} \to \mathcal{M}$ be a Jordan isomorphism such that $\tau(\Phi(x)) = \tau(x)$ for all $x \in \mathcal{M}$. Then for every symmetric space $(\mathcal{E}(\mathcal{M}, \tau), \|\cdot\|_{\mathcal{E}(\mathcal{M}, \tau)})$ the mapping $V \colon \mathcal{E}(\mathcal{M}, \tau) \to \mathcal{E}(\mathcal{M}, \tau)$ given by the equality $V(x) = u \cdot \widetilde{\Phi}(x) \cdot v, x \in \mathcal{E}(\mathcal{M}, \tau), u, v$ are unitary operators in \mathcal{M} , is a surjective linear isometry.

We need the following description of surjective linear isometries of the spaces $(\Lambda_{\psi}(\mathcal{M},\tau), \|\cdot\|_{\psi})$ and $(M^0_{\psi}(\mathcal{M},\tau), \|\cdot\|_{M_{\psi}})$ [5, Theorems 5.1, 6.1].

Theorem 2. Let \mathcal{M} be an arbitrary von Neumann algebra with a faithful normal finite trace τ , and let $V : \Lambda_{\psi}(\mathcal{M}, \tau) \to \Lambda_{\psi}(\mathcal{M}, \tau)$ (respectively, $V : M^{0}_{\psi}(\mathcal{M}, \tau) \to M^{0}_{\psi}(\mathcal{M}, \tau)$) be a surjective linear isometry. Then there exist uniquely an unitary operator $u \in \mathcal{M}$ and a Jordan isomorphism $\Phi : \mathcal{M} \to \mathcal{M}$ such that $V(x) = u \cdot \Phi(x)$ and $\tau(\Phi(x)) = \tau(x)$ for all $x \in \mathcal{M}$.

4. Local Isometries of Non-Commutative Lorentz Spaces

Let $(X, \|\cdot\|_X)$ be an arbitrary Banach space over the field \mathbb{K} of complex or real numbers. A surjective (not necessarily linear) mapping $T: X \to X$ is called a surjective 2-local isometry [2], if for any $x, y \in X$ there exists a surjective linear isometry $V_{x,y}: X \to X$ such that $T(x) = V_{x,y}(x)$ and $T(y) = V_{x,y}(y)$. It is clear that every surjective linear isometry on X is a surjective 2-local isometry on X. In addition,

$$T(\lambda x) = V_{x,\lambda x}(\lambda x) = \lambda V_{x,\lambda x}(x) = \lambda T(x)$$

for any $x \in X$ and $\lambda \in \mathbb{K}$.

Consequently, in order to establish linearity of a 2-local isometry T, it is sufficient to show that T(x + y) = T(x) + T(y) for all $x, y \in X$.

Since

$$||T(x) - T(y)||_X = ||V_{x,y}(x) - V_{x,y}(y)||_X = ||x - y||_X \text{ for all } x, y \in X,$$

it follows that T is continuous map on $(X, \|\cdot\|_X)$. In addition, in the case a real Banach space X ($\mathbb{K} = \mathbb{R}$), every surjective 2-local isometry on X is a linear map (see Mazur–Ulam Theorem [12, Ch. 1, § 1.3, Theorem 1.3.5.]). In the case a complex Banach space X ($\mathbb{K} = \mathbb{C}$), this fact is not true.

Using the description of all surjective linear isometries on a separable Banach symmetric ideal C_E [3] (respectively, on a Banach symmetric ideal C_E with Fatou property [1]), $C_E \neq C_{l_2}$, in the papers [1, 2] it is proved that every surjective 2-local isometry $T : C_E \to C_E$ is a linear isometry.

The following Theorem is a version of the above results for the spaces $\Lambda_{\psi}(\mathcal{M},\tau)$ and $M^0_{\psi}(\mathcal{M},\tau)$.

Theorem 3. Let \mathcal{M} be an arbitrary factor with a faithful normal finite trace τ , and let $T : \Lambda_{\psi}(\mathcal{M}, \tau) \to \Lambda_{\psi}(\mathcal{M}, \tau)$ (respectively, $T : M_{\psi}^{0}(\mathcal{M}, \tau) \to M_{\psi}^{0}(\mathcal{M}, \tau)$) be a surjective 2-local isometry. Then T is a linear isometry.

We assume that Φ is an *-isomorphism (in the case when Φ is an *-anti-isomorphism, the proof is similar).

We have

$$\tau(T(x) \cdot (T(y))^*) = \tau(V_{x,y}(x) \cdot (V_{x,y}(y))^*)$$

= $\tau(u \cdot \Phi(x) \cdot (u \cdot \Phi(y))^*) = \tau(u \cdot \Phi(xy^*) \cdot u^*) = \tau(\Phi(xy^*)) = \tau(xy^*).$

Consequently, $\tau(T(x) \cdot (T(y))^*) = \tau(xy^*)$ for all $x, y \in \mathcal{M}$. If $x, y, z \in \mathcal{M}$, then

$$\tau(T(x+y) \cdot (T(z))^*) = \tau((x+y)z^*), \quad \tau(T(x) \cdot T(z)^*) = \tau(xz^*),$$
$$\tau(T(y) \cdot T(z)^*) = \tau(y \cdot z^*).$$

Therefore

$$\tau((T(x+y) - T(x) - T(y)) \cdot (T(z))^*) = 0$$

for all $z \in \mathcal{M}$. Taking z = x + y, z = x and z = y, we obtain

$$\tau((T(x+y) - T(x) - T(y)) \cdot ((T(x+y) - T(x) - T(y))^*) = 0,$$

that is, T(x+y) = T(x) + T(y) for all $x, y \in \mathcal{M}$.

Since the Lorentz space $\Lambda_{\psi}(0, \infty)$ of measurable functions on a semi-axis $[0, \infty)$ is separable space [13, Ch. 2I, §5], it follows that the non-commutative Lorentz $(\Lambda_{\psi}(\mathcal{M}, \tau), \|\cdot\|_{\psi})$ has an order continuous norm [14, Proposition 3.6], that is, $\|x_n\|_{\psi} \downarrow 0$ whenever $x_n \in \Lambda_{\psi}(\mathcal{M}, \tau)$ and $x_n \downarrow 0$. Consequently, the factor \mathcal{M} is dense in the space $\Lambda_{\psi}(\mathcal{M}, \tau)$. Since T is a continuous mapping on $\Lambda_{\psi}(\mathcal{M}, \tau)$ it follows that T(x+y) = T(x) + T(y) for all $x, y \in \Lambda_{\psi}(\mathcal{M}, \tau)$, that is, T is a surjective linear isometry.

For the space $M^0_{\psi}(\mathcal{M}, \tau)$, the proof of the linearity of the surjective 2-local isometry $T: M^0_{\psi}(\mathcal{M}, \tau) \to M^0_{\psi}(\mathcal{M}, \tau)$ repeats the previous proof. \triangleright

References

- Aminov, B. R. and Chilin, V. I. Isometries of Perfect Norm Ideals of Compact Operators, Studia Mathematica, 2018, vol. 241, no. 1, pp. 87–99. DOI: 10.4064/sm170306-19-4.
- Molnar, L. 2-Local Isometries of some Operator Algebras, Proceedings of the Edinburgh Mathematical Society, 2002, vol. 45, pp. 349–352. DOI: 10.1017/S0013091500000043.
- Sourour, A. Isometries of Norm Ideals of Compact Operators, Journal of Functional Analysis, 1981, vol. 43, no. 1, pp. 69–77. DOI: 10.1016/0022-1236(81)90038-0.
- Lord, S., Sukochev, F. and Zanin, D. Singular Traces. Theory and Applications, Berlin/Boston, Walter de Gruyter GmbH, 2013.
- Chilin, V. I., Medzhitov, A. M. and Sukochev, F. A. Isometries of Non-Commutative Lorentz Spaces, Mathematische Zeitschrift, 1989, vol. 200, no. 4, pp. 527–545. DOI: 10.1007/BF01160954.
- 6. Takesaki, M. Theory of Operator Algebras I, New York, Springer-Verlag, 1979.
- Fack, T. and Kosaki, H. Generalized s-Numbers of τ-Measurable Operators, Pacific Journal of Mathematics, 1986, vol. 123, no. 2, pp. 269–300. DOI: 10.2140/pjm.1986.123.269.
- Chilin, V. I. and Sukochev, F. A. Weak Convergence in Non-Commutative Symmetric Spaces, Journal of Operator Theory, 1994, vol. 31, no. 1, pp. 35–55.
- Ciach, L. J. On the Conjugates of Some Operator Spaces, I, Demonstratio Mathematica, 1985, vol. 18, no. 2, pp. 537–554. DOI: 10.1515/dema-1985-0213.

- Bratteli, O. and Robinson, D. W. Operator Algebras and Quantum Statistical Mechaniks, N.Y.– Heidelber–Berlin, Springer-Verlag, 1979.
- Sarymsakov, T. A., Ayupov, Sh. A., Khadzhiev D. and Chilin V. I. Uporyadochennye Algebry [Ordered Algebras], Tashkent, FAN, 1983 [in Russian].
- 12. Fleming, R. J., Jamison, J. E. Isometries on Banach Spaces: Function Spaces, Florida, Boca Raton, Chapman-Hall/CRC, 2003.
- 13. Krein, M. G., Petunin, Ju. I. and Semenov, E. M. Interpolation of Linear Operators, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, 1982.
- Dodds, P., Dodds. Th. K.-Y and Pagter, B. Noncommutative Kothe Duality, Transactions of the American Mathematical Society, 1993, vol. 339, no. 2, pp. 717–750. DOI: 10.1090/S0002-9947-1993-1113694-3.

Received 20 June, 2019

AKROM A. ALIMOV Tashkent Institute of Design, Construction and Maintenance of Automobile Roads, 20 Amir Temur Av., Tashkent 100060, Uzbekistan, Associate Professor E-mail: alimovakrom63@yandex.ru

VLADIMIR I. CHILIN National University of Uzbekistan, Vuzgorodok, Tashkent 100174, Uzbekistan Professor E-mail: vladimirchil@gmail.com, chilin@ucd.uz

> Владикавказский математический журнал 2019, Том 21, Выпуск 4, С. 5–10

2-ЛОКАЛЬНЫЕ ИЗОМЕТРИИ НЕКОММУТАТИВНЫХ ПРОСТРАНСТВ ЛОРЕНЦА

Алимов А. А.¹, Чилин В. И.²

¹ Ташкентский институт по проектированию, строительству и эксплуатации автомобильных дорог, Узбекистан, 100060, Ташкент, пр. Амира Темура, 20 ² Национальный университет Узбекистана, Узбекистан, 100174, Ташкент, Вузгородок E-mail: alimovakrom630yandex.ru, vladimirchil0gmail.com, chilin0ucd.uz

Аннотация. Пусть \mathcal{M} алгебра фон Неймана с точным нормальным конечным следом τ , и пусть $S(\mathcal{M},\tau)$ инволютивная алгебра всех τ -измеримых операторов, присоединенных к алгебре \mathcal{M} . Для оператора $x \in S(\mathcal{M},\tau)$ невозрастающая перестановка $\mu(x) : t \to \mu(t;x), t > 0$, определяется с помощью равенства $\mu(t;x) = \inf\{\|xp\|_{\mathcal{M}} : p^2 = p^* = p \in \mathcal{M}, \tau(1-p) \leq t\}$. Пусть ψ возрастающая вогнутая непрерывная функция на $[0,\infty)$, для которой $\psi(0) = 0, \psi(\infty) = \infty$. Пусть $\Lambda_{\psi}(\mathcal{M},\tau) = \{x \in S(\mathcal{M},\tau) : \|x\|_{\psi} = \int_0^{\infty} \mu(t;x) d\psi(t) < \infty\}$ некоммутативное пространство Лоренца. Сюръективное (не обязательно линейное) отображение $V : \Lambda_{\psi}(\mathcal{M},\tau) \to \Lambda_{\psi}(\mathcal{M},\tau)$ называется сюръективной 2-локальной изометрией, если для любых $x, y \in \Lambda_{\psi}(\mathcal{M},\tau)$ существует такая сюръективная линейная изометрия $V_{x,y} : \Lambda_{\psi}(\mathcal{M},\tau) \to \Lambda_{\psi}(\mathcal{M},\tau)$, что $V(x) = V_{x,y}(x)$ и $V(y) = V_{x,y}(y)$. Доказано, что в случае, когда \mathcal{M} есть фактор, каждая сюръективная 2-локальная изометрия $V : \Lambda_{\psi}(\mathcal{M},\tau) \to \Lambda_{\psi}(\mathcal{M},\tau)$ есть линейная изометрия.

Ключевые слова: измеримый оператор, пространство Лоренца, изометрия.

Mathematical Subject Classification (2010): 46L52, 46B04.

Образец цитирования: Aminov B. R., Chilin V. I. Isometries of Real Subspaces of Self-Adjoint Operators in Banach Symmetric Ideals // Владикавк. мат. журн.—2019.—Т. 21, № 4.—С. 5–10 (in English). DOI: 10.23671/VNC.2019.21.44595.