УДК 517.98 **DOI** 10.23671/VNC.2019.21.44607

ISOMETRIES OF REAL SUBSPACES OF SELF-ADJOINT OPERATORS IN BANACH SYMMETRIC IDEALS

B. R. Aminov¹, V. I. Chilin¹

¹ National University of Uzbekistan, Vuzgorodok, Tashkent 100174, Uzbekistan E-mail: aminovbehzod@gmail.com, vladimirchil@gmail.com, chilin@ucd.uz

Dedicated to E. I. Gordon on the occasion of his 70th birthday

Abstract. Let $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ be a Banach symmetric ideal of compact operators, acting in a complex separable infinite-dimensional Hilbert space \mathcal{H} . Let $\mathcal{C}_E^h = \{x \in \mathcal{C}_E : x = x^*\}$ be the real Banach subspace of self-adjoint operators in $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$. We show that in the case when $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is a separable or perfect Banach symmetric ideal $(\mathcal{C}_E \neq \mathcal{C}_2)$ any skew-Hermitian operator $H : \mathcal{C}_E^h \to \mathcal{C}_E^h$ has the following form H(x) = i(xa - ax) for same $a^* = a \in \mathcal{B}(\mathcal{H})$ and for all $x \in \mathcal{C}_E^h$. Using this description of skew-Hermitian operators, we obtain the following general form of surjective linear isometries $V : \mathcal{C}_E^h \to \mathcal{C}_E^h$. Let $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ be a separable or a perfect Banach symmetric ideal with not uniform norm, that is $\|p\|_{\mathcal{C}_E} > 1$ for any finite dimensional projection $p \in \mathcal{C}_E$ with dim $p(\mathcal{H}) > 1$, let $\mathcal{C}_E \neq \mathcal{C}_2$, and let $V : \mathcal{C}_E^h \to \mathcal{C}_E^h$ be a surjective linear isometry. Then there exists unitary or anti-unitary operator u on \mathcal{H} such that $V(x) = uxu^*$ or $V(x) = -uxu^*$ for all $x \in \mathcal{C}_E^h$.

Key words: symmetric ideal of compact operators, skew-Hermitian operator, isometry.

Mathematical Subject Classification (2010): 46L52, 46B04.

For citation: Aminov, B. R. and Chilin, V. I. Isometries of Real Subspaces of Self-Adjoint Operators in Banach Symmetric Ideals, *Vladikavkaz Math. J.*, 2019, vol. 21, pp. 11–24. DOI: 10.23671/VNC.2019.21. 44607.

1. Introduction

The study of linear isometries on classical Banach spaces was initiated by S. Banach. In [1, Ch. XI], he described all isometries on the space $L_p[0, 1]$ with $p \neq 2$. In [2], J. Lamperti characterized all linear isometries on the L_p -space $L_p(\Omega, \mathcal{A}, \mu)$, where $(\Omega, \mathcal{A}, \mu)$ is a measure space with a complete σ -finite measure μ . Both S. Banach and J. Lamberti used a method for description of linear isometries on L_p -spaces that was independent of the choice of a scalar field. For studying linear isometries on the broader class of function symmetric spaces $E(\Omega, \mathcal{A}, \mu)$, different approaches are required that depend on a scalar field. If $E(\Omega, \mathcal{A}, \mu)$ is a complex symmetric space then G. Lumer's method [3] based on the theory of Hermitian operators can be effectively applied. For example, M. G. Zaidenberg [4, 5] used this method for description of all surjective linear isometries on the complex symmetric space $E(\Omega, \mathcal{A}, \mu)$, where μ is a continuous measure. For the symmetric space E = E(0, 1) of real-valued

^{© 2019} Aminov, B. R. and Chilin, V. I.

measurable functions on the segment [0, 1] with a Lebesgue measure μ , where E is a separable space or has the Fatou property, a description of surjective linear isometries on E was given by N. J. Kalton and B. Randrianantoanina [6]. They used methods of the theory of positive numerical operators. For real symmetric sequence spaces, a general form of surjective linear isometries was described by M. Sh. Braverman and E. M. Semenov [7, 8]. They used methods based on the theory of finite groups. For complex separable symmetric sequence spaces (symmetric sequence spaces with the Fatou property), a general form of surjective linear isometries was described in [9] (respectively, in [10]).

Naturally, the next step is to describe surjective linear isometries in the noncommutative situation, when symmetric sequence spaces are replaced by symmetric ideals of compact operators.

Assume $(\mathcal{H}, (\cdot, \cdot))$ is an infinite-dimensional complex separable Hilbert space. Let $\mathcal{B}(\mathcal{H})$ (respectively, $\mathcal{K}(\mathcal{H})$) be the C^* -algebra of all bounded (respectively, compact) linear operators on \mathcal{H} . For a compact operator $x \in \mathcal{K}(\mathcal{H})$, we denote by $\mu(x) := \{\mu(n, x)\}_{n=1}^{\infty}$ the singular value sequence of x, that is, the decreasing rearrangement of the eigenvalue sequence of $|x| = (x^*x)^{\frac{1}{2}}$. We let Tr denote the standard trace on $\mathcal{B}(\mathcal{H})$. For $p \in [1, \infty)$ ($p = \infty$), we let

$$C_p := \left\{ x \in \mathcal{K}(\mathcal{H}) : \operatorname{Tr}(|x|^p) < \infty \right\} \quad (\text{respectively}, C_\infty = \mathcal{K}(\mathcal{H}))$$

denote the *p*-th Schatten ideal of $\mathcal{B}(\mathcal{H})$, with the norm

$$||x||_p := \operatorname{Tr}(|x|^p)^{\frac{1}{p}} \quad (\text{respectively}, ||x||_{\infty} := \sup_{n \ge 1} |\mu(n, x)|).$$

In 1975, J. Arazy [11], [12, Ch. 11, § 2, Theorem 11.2.5] gave the following description of all the surjective isometries of Schatten ideals C_p .

Theorem 1. Let $V : \mathcal{C}_p \to \mathcal{C}_p$, $1 \leq p \leq \infty$, $p \neq 2$, be an surjective isometry. Then there exist unitary operators u_1 and u_2 or anti-unitary operators v_1 and v_2 on \mathcal{H} such that either $Vx = u_1xu_2$ or $Vx = v_1x^*v_2$ for all $x \in \mathcal{C}_p$.

Recall that a mapping $v : \mathcal{H} \to \mathcal{H}$ is an anti-unitary operator if

$$v(\lambda h + f) = \lambda v(h) + v(f)$$
 and $||v(h)||_{\mathcal{H}} = ||h||_{\mathcal{H}}$

for every complex number λ and $h, f \in \mathcal{H}$. If v is an anti-unitary operator then there exists an anti-unitary operator v^* such that $(h, v(f)) = (f, v^*(h))$ for all $h, f \in \mathcal{H}$ (see, for example, [12, Ch. 11, §2]).

The Schatten ideals C_p are examples of Banach symmetric ideals $(C_E, \|\cdot\|_{C_E})$ of compact operators associated with symmetric sequence spaces $(E, \|\cdot\|_E)$ (see Section 2.2 below). In 1981 A. Sourour [13] proved a version of Theorem 1 for separable Banach symmetric ideal $(C_E, \|\cdot\|_{C_E})$ such that $C_E \neq C_2$. Recently [14], a variant of Theorem 1 was obtained for any perfect Banach symmetric ideals $(C_E, \|\cdot\|_{C_E}), C_E \neq C_2$ (recall that $(C_E, \|\cdot\|_{C_E})$) is a perfect ideals, if $C_E = C_E^{\times \times}$ [15] (see Section 2.2 below)).

It is clear that for any unitary or anti-unitary operator u the linear operators $V_1(x) = uxu^*$ and $V_2(x) = -uxu^*$ acting in a real Banach space $(\mathcal{C}_E^h, \|\cdot\|_{\mathcal{C}_E})$ are surjective isometries, where $\mathcal{C}_E^h = \{x \in \mathcal{C}_E : x = x^*\}.$

Our main result states that if $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is a separable or a perfect Banach symmetric ideal of compact operators such that $\mathcal{C}_E \neq \mathcal{C}_2$, there are no other isometries in $(\mathcal{C}_E^h, \|\cdot\|_{\mathcal{C}_E})$:

Theorem 2. Let $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ be a separable or a perfect Banach symmetric ideal with not uniform norm, $\mathcal{C}_E \neq \mathcal{C}_2$, and let $V: \mathcal{C}_E^h \to \mathcal{C}_E^h$ be a surjective isometry. Then there exists unitary or anti-unitary operator u on \mathcal{H} such that V can be written in the form $V(x) = uxu^*$ $(x \in \mathcal{C}_E^h)$ or in the form $V(x) = -uxu^*$ $(x \in \mathcal{C}_E^h)$. An analogous result for the space of self-adjoint traceless operators on a finite dimensionalal Hilbert space was obtained by G. Nagy [16].

2. Preliminaries

2.1. Symmetric Sequence Spaces. Let ℓ_{∞} (respectively, c_0) be the Banach lattice of all bounded (respectively, converging to zero) sequences $\{\xi_n\}_{n=1}^{\infty}$ of real numbers with respect to the uniform norm $\|\{\xi_n\}_{n=1}^{\infty}\|_{\infty} = \sup_{n \in \mathbb{N}} |\xi_n|$, where \mathbb{N} is the set of natural numbers. If $2^{\mathbb{N}}$ is the σ -algebra of all subsets of \mathbb{N} and $\mu(\{n\}) = 1$ for each $n \in \mathbb{N}$, then $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$ is a σ -finite measure space, $\mathcal{L}_{\infty}(\mathbb{N}, 2^{\mathbb{N}}, \mu) = \ell_{\infty}$,

$$\mathcal{L}_1(\mathbb{N}, 2^{\mathbb{N}}, \mu) = \ell_1 = \left\{ \{\xi_n\}_{n=1}^{\infty} \subset \mathbb{R} : \|\{\xi_n\}\|_1 = \sum_{n=1}^{\infty} |\xi_n| < \infty \right\},\$$

where \mathbb{R} is the field of real numbers. If $\xi = \{\xi_n\}_{n=1}^{\infty} \in \ell_{\infty}$, then the non-increasing rearrangement $\xi^* : (0, \infty) \to (0, \infty)$ of ξ is defined by

$$\xi^*(t) = \inf\{\lambda : \mu(\{|\xi| > \lambda\}) \leqslant t\}, \quad t > 0,$$

(see, for example, [17, Ch. 2, Definition 1.5]).

Therefore the non-increasing rearrangement ξ^* is identified with the sequence $\xi^* = \{\xi_n^*\}$, where

$$\xi_n^* = \inf_{\substack{F \subset \mathbb{N}, \\ \operatorname{card}(F) < n}} \sup_{n \notin F} |\xi_n|.$$

A non-zero linear subspace $E \subseteq \ell_{\infty}$ with a Banach norm $\|\cdot\|_{E}$ is called *symmetric* sequence space if conditions $\eta \in E, \xi \in \ell_{\infty}, \xi^* \leq \eta^*$ imply that $\xi \in E$ and $\|\xi\|_{E} \leq \|\eta\|_{E}$.

If $(E, \|\cdot\|_E)$ is a symmetric sequence space, then $\ell_1 \subset E \subset \ell_\infty$, in addition, $\|\xi\|_E \leq \|\xi\|_1$ for all $\xi \in \ell_1$ and $\|\xi\|_\infty \leq \|\xi\|_E$ for all $\xi \in E$ [17, Ch. 2, §6, Theorem 6.6]. If there exists $\xi \in (E \setminus c_0)$ then $\xi^* \geq \alpha \mathbf{1}$ for some $\alpha > 0$, and therefore $\mathbf{1} \in E$, where $\mathbf{1} = \{1, 1, \ldots\}$. Consequently, for any symmetric sequence space E we have that $E \subseteq c_0$ or $E = \ell_\infty$.

2.2. Banach Symmetric Ideal of Compact Operators. Let $(\mathcal{H}, (\cdot, \cdot))$ be an infinitedimensional complex separable Hilbert space, let $\mathcal{B}(\mathcal{H})$ (respectively, $\mathcal{K}(\mathcal{H}), \mathcal{F}(\mathcal{H})$) be the *-algebra of all bounded (respectively, compact, finite rank) linear operators in \mathcal{H} , and let $\mathcal{P}(\mathcal{H}) = \{p \in \mathcal{B}(\mathcal{H}) : p = p^* = p^2\}$. It is known that *-algebras $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ are C^* -algebras with respect to the uniform operator norm, which we shall denote by $\|\cdot\|_{\infty}$. For a subset $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$, we set $\mathcal{A}^h = \{x \in \mathcal{A} : x = x^*\}$.

It is well known that $\mathcal{F}(\mathcal{H}) \subset \mathcal{I} \subset \mathcal{K}(\mathcal{H})$ for any proper two-sided ideal \mathcal{I} in $\mathcal{B}(\mathcal{H})$ (see for example, [18, Proposition 2.1]).

If $(E, \|\cdot\|_E) \subset c_0$ is a symmetric sequence space, then the set

$$\mathcal{C}_E := \{ x \in \mathcal{K}(\mathcal{H}) : \{ \mu(n, x) \}_{n=1}^{\infty} \in E \}$$

is a proper two-sided ideal in $\mathcal{B}(\mathcal{H})$ (see [18, Theorem 2.5]). In addition, $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is a Banach space with respect to the norm $\|x\|_{\mathcal{C}_E} = \|\{\mu(n, x)\}\|_E$ [19] (see also [20, Ch. 3, §3.5]), and the norm $\|\cdot\|_{\mathcal{C}_E}$ has the following properties:

- 1) $||xzy||_{\mathcal{C}_E} \leq ||x||_{\infty} ||y||_{\infty} ||z||_{\mathcal{C}_E}$ for all $x, y \in \mathcal{B}(\mathcal{H})$ and $z \in \mathcal{C}_E$;
- 2) $||x||_{\mathcal{C}_E} = ||x||_{\infty}$ if $x \in \mathcal{F}(\mathcal{H})$ is of rank 1.

In this case we say that $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is a *Banach symmetric ideal* (cf. [18, Ch. 1, §1.7], [21, Ch. III]). It is known that $\mathcal{C}_1 \subset \mathcal{C}_E \subset \mathcal{K}(\mathcal{H})$ and $\|x\|_{\mathcal{C}_E} \leq \|x\|_1, \|y\|_{\infty} \leq \|y\|_{\mathcal{C}_E}$ for all $x \in \mathcal{C}_1$, $y \in \mathcal{C}_E$.

If $(E, \|\cdot\|_E)$ is a symmetric sequence space (respectively, $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is a Banach symmetric ideal), then the Köthe dual E^{\times} (respectively, \mathcal{C}_E^{\times}) is defined as

$$E^{\times} = \left\{ \xi = \{\xi_n\}_{n=1}^{\infty} \in \ell_{\infty} : \, \xi\eta = \{\xi_n\eta_n\}_{n=1}^{\infty} \in \ell_1 \text{ for all } \eta = \{\eta_n\}_{n=1}^{\infty} \in E \right\},$$

$$\left(\text{respectively, } \mathcal{C}_E^{\times} = \left\{ x \in \mathcal{B}(\mathcal{H}) : \, xy \in \mathcal{C}_1 \text{ for all } y \in \mathcal{C}_E \right\} \right),$$

and

$$\|\xi\|_{E^{\times}} = \sup\left\{\sum_{n=1}^{\infty} |\xi_n \eta_n| : \eta = \{\eta_n\}_{n=1}^{\infty} \in E, \ \|\eta\|_E \leqslant 1\right\}, \quad \xi \in E^{\times},$$

(respectively, $\|x\|_{\mathcal{C}_E^{\times}} = \sup\left\{\operatorname{Tr}(|xy|) : y \in \mathcal{C}_E, \ \|y\|_{\mathcal{C}_E} \leqslant 1\right\}, \ x \in \mathcal{C}_E^{\times}$)

It is known that $(E^{\times}, \|\cdot\|_{E^{\times}})$ is a symmetric sequence space [22, Ch. II, §4, Theorems 4.3, 4.9] and $\ell_1^{\times} = \ell_{\infty}$. In addition, if $E \neq \ell_1$ then $E^{\times} \subset c_0$. Therefore, if $E \neq \ell_1$, the space $(\mathcal{C}_E^{\times}, \|\cdot\|_{\mathcal{C}_E^{\times}})$ is a symmetric ideal of compact operators.

A Banach symmetric ideal $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is said to be *perfect* if $\mathcal{C}_E = \mathcal{C}_E^{\times \times}$ (see, for example, [15]). It is clear that \mathcal{C}_E is perfect if and only if $E = E^{\times \times}$.

A symmetric sequence space $(E, \|\cdot\|_E)$ (a Banach symmetric ideal $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$) is said to possess *Fatou property* if the conditions

$$0 \leq \xi_k \leq \xi_{k+1}, \ \xi_k \in E$$
 (respectively, $0 \leq x_k \leq x_{k+1}, \ x_k \in \mathcal{C}_E$) for all $k \in \mathbb{N}$

and $\sup_{k\geq 1} \|\xi_k\|_E < \infty$ (respectively, $\sup_{k\geq 1} \|x_k\|_{\mathcal{C}_E} < \infty$) imply that there exists an element $\xi \in E$ (respectively, $x \in \mathcal{C}_E$) such that $\xi_k \uparrow \xi$ and $\|\xi\|_E = \sup_{k\geq 1} \|\xi_k\|_E$ (respectively, $x_k \uparrow x$ and $\|x\|_{\mathcal{C}_E} = \sup_{k\geq 1} \|x_k\|_{\mathcal{C}_E}$).

It is known that $(E, \|\cdot\|_E)$ (respectively, $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$) has the Fatou property if and only if $E = E^{\times\times}$ [23, Vol. II, Ch. 1, Section a] (respectively, $\mathcal{C}_E = \mathcal{C}_E^{\times\times}$ [24, Theorem 5.14]). Therefore $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is a perfect Banach symmetric ideal if and only if $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ has the Fatou property.

If $y \in \mathcal{C}_{E}^{\times}$, then a linear functional $f_{y}(x) = \operatorname{Tr}(x \cdot y)$, $x \in \mathcal{C}_{E}$, is continuous on $(\mathcal{C}_{E}, \|\cdot\|_{\mathcal{C}_{E}})$, in addition, $\|f_{y}\|_{\mathcal{C}_{E}^{*}} = \|y\|_{\mathcal{C}_{E}^{\times}}$, where $(\mathcal{C}_{E}^{*}, \|\cdot\|_{\mathcal{C}_{E}^{*}})$ is the dual of the Banach space $(\mathcal{C}_{E}, \|\cdot\|_{\mathcal{C}_{E}})$ (see, for example, [15]). Identifying an element $y \in \mathcal{C}_{E}^{\times}$ and the linear functional f_{y} , we may assume that \mathcal{C}_{E}^{\times} is a closed linear subspace in \mathcal{C}_{E}^{*} . Since $\mathcal{F}(\mathcal{H}) \subset \mathcal{C}_{E}^{\times}$, it follows that \mathcal{C}_{E}^{\times} is a total subspace in \mathcal{C}_{E}^{*} , that is, the conditions $x \in \mathcal{C}_{E}$, f(x) = 0 for all $f \in \mathcal{C}_{E}^{\times}$ imply x = 0. Thus, the weak topology $\sigma(\mathcal{C}_{E}, \mathcal{C}_{E}^{\times})$ is a Hausdorff topology, in addition $\mathcal{F}(\mathcal{H})$ (respectively, $\mathcal{F}(\mathcal{H})^{h}$) is $\sigma(\mathcal{C}_{E}, \mathcal{C}_{E}^{\times})$ -dense in \mathcal{C}_{E} (respectively, \mathcal{C}_{E}^{h}).

3. Skew-Hermitian Operators in Banach Symmetric Ideals

Let X be a linear space over the field \mathbb{K} of real or complex numbers. A semi-inner product on a space X is a \mathbb{K} -valued form $[\cdot, \cdot]: X \times X \to \mathbb{K}$ which satisfies

- (i) $[\alpha x + y, z] = \alpha \cdot [x, z] + [y, z]$ for all $\alpha \in \mathbb{K}$ and $x, y, z \in X$;
- (ii) $[x, \alpha y] = \overline{\alpha} \cdot [x, y]$ for all $\alpha \in \mathbb{K}$ and $x, y \in X$;
- (iii) $[x, x] \ge 0$ for all $x \in X$ and [x, x] = 0 implies that x = 0;

15

(iv) $|[x, y]|^2 \leq [x, x] \cdot [y, y]$ for all $x, y \in X$

(see, for example, $[25, Ch. 2, \S1]$).

The function $||x|| = \sqrt{[x,x]}$ is the norm on a linear space X. Conversely, if $(X, ||\cdot||_X)$ is a normed linear space, then there exists semi-inner product $[\cdot, \cdot]$ on X compatible with the norm $||\cdot||_X$, that is, $||x||_X = \sqrt{[x,x]}$ [25, Ch. 2, §1]. In particular, the semi-inner product (compatible with the norm $||\cdot||_X$) can be defined using the equation $[x,y] = \varphi_y(x)$, where $\varphi_y \in X^*$, $||\varphi_y||_{X^*} = ||y||_X$ and $\varphi_y(y) = ||y||_X^2$ (such functional is called a support functional at $y \in X$) [25, Ch. 2, §1, Theorem 10].

Let $(X, \|\cdot\|_X)$ be Banach space over field \mathbb{K} , and let $[\cdot, \cdot]$ be a semi-inner product on Xwhich is compatible with the norm $\|\cdot\|_X$. A linear bounded operator $H: X \to X$ is said to be *skew-Hermitian*, if $\operatorname{Re}([H(x), x]) = 0$ for all $x \in X$, where $\operatorname{Re}(\alpha)$ is the real part of number $\alpha \in \mathbb{K}$ [12, Ch.9, §4]. In particular, if $\mathbb{K} = \mathbb{R}$ then $\varphi_x(H(x)) = [H(x), x] = 0$ for every $x \in X$.

The following Proposition is well known [12, Ch. 9, §4, Proposition 9.4.2].

Proposition 1. Let $(X, \|\cdot\|_X)$ be a real Banach space and let H be a skew-Hermitian operator on X. If $V: X \to X$ is a surjective isometry then an operator $V \cdot H \cdot V^{-1}$ is a skew-Hermitian.

It is clear that in the case $(X, \|\cdot\|_X) = (\mathcal{C}^h_E, \|\cdot\|_{\mathcal{C}_E})$ every linear operator $H : \mathcal{C}^h_E \to \mathcal{C}^h_E$ defined by $H(x) = i(xa - ax), x \in \mathcal{C}^h_E$, where $a \in \mathcal{B}(H)^h$, $i^2 = -1$ is a skew-Hermitian operator.

The following Theorem gives a description of skew-Hermitian operators acting on \mathcal{C}_E^h when \mathcal{C}_E is a separable or perfect Banach symmetric ideal other than \mathcal{C}_2 .

Theorem 3. Let $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ be a separable or perfect Banach symmetric ideal, and let $\mathcal{C}_E \neq \mathcal{C}_2$. Then for any skew-Hermitian operator $H : \mathcal{C}_E^h \to \mathcal{C}_E^h$ there exists $a \in \mathcal{B}(H)^h$ such that H(x) = i(xa - ax) for all $x \in \mathcal{C}_E^h$.

Step 1. If $\xi, \eta \in \mathcal{H}, (\eta, \xi) = 0$, then $\langle H(\eta \otimes \eta), \xi \otimes \xi \rangle = 0$.

We can assume that $\|\eta\|_{\mathcal{H}} = \|\xi\|_{\mathcal{H}} = 1$. Since $p = \eta \otimes \eta$ is one dimensional projections and H is a skew-Hermitian operator, it follows that

$$0 = [H(p), p] = f_p(H(p)) = \langle H(p), p \rangle.$$

$$\tag{1}$$

By Lemma 9.2.7 ([12, Ch. 9, §9.2], see also the proof of Lemma 11.3.2 [12, Ch. 9, §11.3]), there exists a vector $\xi = \{\xi_1, \xi_2\} \in (\mathbb{R}^2, \|\cdot\|_E), \ \xi_1 > 0, \xi_2 > 0, \ \|\xi\|_E = 1$, such that the functional $f(\{\eta_1, \eta_2\}) = \eta_1\xi_1 + \eta_2\xi_2, \ \{\eta_1, \eta_2\} \in \mathbb{R}^2$, is a support functional at ξ for space $(\mathbb{R}^2, \|\cdot\|_E)$.

Let us show that the linear functional

$$\varphi(y) = \langle y, x \rangle, \quad y \in \mathcal{C}_E^h, \ x = \xi_1 p + \xi_2 q,$$

is a support functional at x for $(\mathcal{C}_E^h, \|\cdot\|_{\mathcal{C}_E})$.

Since f is support functional at ξ for $(\mathbb{R}^2, \|\cdot\|_E)$ and $\|\xi\|_E = 1$, it follows that $\xi_1^2 + \xi_2^2 = f(\{\xi_1, \xi_2\}) = f(\xi) = \|\xi\|_E^2 = 1$. Furthermore, by $\|f\| = \|\xi\|_E = 1$, we have that $|f(\{\eta_1, \eta_2\})| = |\xi_1\eta_1 + \xi_2\eta_2| \leq 1$ for every $\{\eta_1, \eta_2\} \in \mathbb{R}^2$ with $\|\{\eta_1, \eta_2\}\|_E \leq 1$. Further, by [21, Ch. II, §4, Lemma 4.1], we have

 $|(y(\eta),\eta)| \leqslant \mu(1,y), \quad |(y(\xi),\xi)| \leqslant \mu(1,y), \quad |(y(\eta),\eta)| + |(y(\xi),\xi)| \leqslant \mu(1,y) + \mu(2,y),$

that is, $\{(y(\eta), \eta), (y(\xi), \xi)\} \prec \prec \{\mu(1, y), \mu(2, y)\}$. Since $(E, \|\cdot\|_E)$ is a fully symmetric sequence space, it follows that

 $\|\{(y(\eta),\eta),(y(\xi),\xi)\}\|_E \leqslant \|\{\mu(1,y),\mu(2,y)\}\|_E \leqslant \|y\|_{\mathcal{C}_E}.$

Consequently, if $y \in \mathcal{C}_E^h$ and $\|y\|_{\mathcal{C}_E} \leq 1$, then

$$|\varphi(y)| = |\langle y, x \rangle| = |\xi_1 \operatorname{Tr}(py) + \xi_2 \operatorname{Tr}(qy)| = \left| f\left(\left\{ (y(\eta), \eta), (y(\xi), \xi) \right\} \right) \right| \leq 1,$$

that is, $\|\varphi\|_{(\mathcal{C}^{h}_{E}, \|\cdot\|_{E})^{*}} \leq 1$. Since $\|x\|_{\mathcal{C}_{E}} = \|\xi\|_{E} = 1$ and

$$\varphi(x) = \langle x, x \rangle = \langle \xi_1 p + \xi_2 q, \xi_1 p + \xi_2 q \rangle = \operatorname{Tr}(\xi_1 p + \xi_2 q)(\xi_1 p + \xi_2 q) = \xi_1^2 + \xi_2^2 = 1,$$

it follows that $\|\varphi\|_{(\mathcal{C}_E^h, \|\cdot\|_E)^*} = 1 = \|x\|_{\mathcal{C}_E}$ and $\varphi(x) = \|x\|_{\mathcal{C}_E}^2$. This means that φ is a support functional at x for space $(\mathcal{C}_E^h, \|\cdot\|_{\mathcal{C}_E})$.

Hence,

$$0 = [H(x), x] = \varphi(H(x)) = \langle H(x), x \rangle = \langle \xi_1 H(p) + \xi_2 H(q), \xi_1 p + \xi_2 q \rangle$$

Since $\langle H(p), p \rangle = \langle H(q), q \rangle = 0$ (see (1)), it follows that

$$\langle H(p), q \rangle = -\langle H(q), p \rangle.$$
 (2)

We extend $\eta_1 = \eta$, $\eta_2 = \xi$ up to an orthonormal basis $\{\eta_i\}_{i=1}^{\infty}$, and let $p_i = \eta_i \otimes \eta_i$. Now we replace our operator H with another skew-Hermitian operator H_0 . Let u be a unitary operator such that $u(\eta_1) = \eta_2$, $u(\eta_2) = \eta_1$ and $u(\eta_k) = \eta_k$ if $k \neq 1, 2$. It is clear that $u^* = u^{-1} = u$, $up_1u = p_2$, $up_2u = p_1$, $up_iu = p_i$, $i \neq 1, 2$, and $V(x) = uxu^* = uxu$ is an surjective isometry on \mathcal{C}_E^h , in addition, $V^{-1} = V$.

By Proposition 1, a linear operator $H_1 = VHV^{-1}$ is a skew-Hermitian operator, in particular, $\langle H_1(p_k), p_k \rangle = 0$ for all $k \in \mathbb{N}$ (see (1)).

If $i, j \neq 1, 2$, then

If $i = 1, j \neq 1, 2$, then

$$\langle H_1(p_1), p_j \rangle = \langle uH(p_2)u, p_j \rangle = \operatorname{Tr}(p_j uH(p_2)u) = (uH(p_2)u(\eta_j), \eta_j)$$

= $(H(p_2)u(\eta_j), u^*(\eta_j)) = (H(p_2)(\eta_j), \eta_j) = \operatorname{Tr}(p_j H(p_2)) = \langle H(p_2), p_j \rangle.$

Similarly, we get the following equalities

- (i) $\langle H_1(p_2), p_j \rangle = \langle H(p_1), p_j \rangle$ if $i = 2, j \neq 1, 2;$
- (ii) $\langle H_1(p_i), p_1 \rangle = \langle H(p_i), p_2 \rangle$ if $j = 1, i \neq 1, 2;$

- (iii) $\langle H_1(p_1), p_2 \rangle = \langle H(p_2), p_1 \rangle$ if i = 1, j = 2;
- (iv) $\langle H_1(p_2), p_1 \rangle = \langle H(p_1), p_2 \rangle$ if i = 2, j = 1.

It is clear that $H_0 = \frac{1}{2}(H - H_1)$ is a skew-Hermitian operator, and if $i, j \neq 1, 2$, then $\langle H_0(p_i), p_j \rangle = \frac{1}{2}(\langle H(p_i), p_j \rangle - \langle H_1(p_i), p_j \rangle) = 0$. Similarly, if $i = 1, j \neq 1, 2$ (respectively, $i = 2, j \neq 1, 2$) we get

$$\langle H_0(p_1), p_j \rangle = \frac{1}{2} (\langle H(p_1), p_j \rangle - \langle H(p_2), p_j \rangle)$$

(respectively,
$$\langle H_0(p_2), p_j \rangle = \frac{1}{2} (\langle H(p_2), p_j \rangle - \langle H(p_1), p_j \rangle)),$$

that is, $\langle H_0(p_1), p_j \rangle + \langle H_0(p_2), p_j \rangle = 0$ in the case $j \neq 1, 2$. Similarly, $\langle H_0(p_j), p_1 \rangle + \langle H_0(p_j), p_2 \rangle = 0$ if $j \neq 1, 2$. Since

$$\left\langle H_0(p_1), p_2 \right\rangle = \frac{1}{2} \left(\left\langle H(p_1), p_2 \right\rangle - \left\langle H(p_2), p_1 \right\rangle \right), \quad \left\langle H(p_1), p_2 \right\rangle = -\left\langle H(p_2), p_1 \right\rangle$$

(see (2)), it follows that $\langle H_0(p_1), p_2 \rangle = \langle H(p_1), p_2 \rangle$. Similarly, we get that $\langle H_0(p_2), p_1 \rangle = -\langle H(p_1), p_2 \rangle$. Finally, since H_0 is a skew-Hermitian operator, we have $\langle H_0(p_k), p_k \rangle = 0$ for all $k \in \mathbb{N}$ (see (1)).

Let *n* be the smallest natural number such that the norm $\|\cdot\|_E$ is not Euclidian on \mathbb{R}^n . Then there exist (see, [10, Lemma 5.4]) linear independent vectors $\xi = (\xi_1, \xi_2, \ldots, \xi_n), \eta = (\eta_1, \eta_2, \ldots, \eta_n) \in \mathbb{R}^n, \|\xi\|_E = 1$, such that

$$\|\xi\|_E = \|f_\eta\|_{E^*} = f_\eta(\xi) = 1,$$
(3)

where $f_{\eta}(\zeta) = \sum_{i=1}^{n} \zeta_i \eta_i$, $\zeta = (\zeta_1, \zeta_2, \dots, \zeta_n) \in \mathbb{R}^n$. By rearranging the coordinates we may assume that $\xi_1 \eta_2 \neq \xi_2 \eta_1$.

Let $x = \sum_{j=1}^{n} \xi_j p_j, \ y = \sum_{j=1}^{n} \eta_j p_j$, and let $\varphi_y(z) = \langle z, y \rangle = \sum_{j=1}^{n} \eta_j \cdot \operatorname{Tr}(p_j z), \ z \in \mathcal{C}_E^h$.

Let us show that φ_y is a support functional at x for $(\mathcal{C}_E^h, \|\cdot\|_E)$. Since $\|f_\eta\|_{E^*} = 1$ (see (3)), it follows that $|f_\eta(\zeta)| = |\sum_{i=1}^n \eta_i \zeta_i| \leq 1$ for every $\zeta = \{\zeta_i\}_{i=1}^n \in \mathbb{R}^n$ with $\|\zeta\|_E \leq 1$. Note that $\|x\|_{\mathcal{C}_E} = \|\xi\|_E = 1$.

We should show that $\|\varphi_y\| = \|x\|_{\mathcal{C}_E} = 1$ and $\varphi_y(x) = \|x\|_{\mathcal{C}_E}^2 = 1$. Indeed,

$$\varphi_y(x) = \langle x, y \rangle = \left\langle \sum_{j=1}^n \xi_j p_j, \sum_{j=1}^n \eta_j p_j \right\rangle = \sum_{j=1}^n \xi_j \eta_j = f_\eta(\xi) = 1 = ||x||_{\mathcal{C}_E}^2$$

If $z \in \mathcal{C}_E^h$, $||z||_{\mathcal{C}_E} \leq 1$ then $|\varphi_y(z)| = \left|\sum_{j=1}^n \eta_j(z(\eta_j), \eta_j)\right| \leq 1$. The last inequality follows from

$$\{(z(\eta_1),\eta_1),(z(\eta_2),\eta_2),\ldots,(z(\eta_n),\eta_n)\} \prec \{\mu(1,z),\mu(2,z),\ldots,\mu(n,z)\}$$

(see [21, Ch. II, § 4, Lemma 4.1]). Therefore $\|\varphi_y\| = \|x\|_{\mathcal{C}_E} = 1$ and $\varphi_y(x) = \|x\|_{\mathcal{C}_E}^2 = 1$. This means that φ_y is a support functional at x for $(\mathcal{C}_E^h, \|\cdot\|_E)$.

Consequently,

$$0 = \langle H_0(x), y \rangle = \langle \xi_1 H_0(p_1) + \ldots + \xi_n H_0(p_n), \eta_1 p_1 + \ldots + \eta_n p_n \rangle$$

$$= (\xi_1 \eta_2 - \xi_2 \eta_1) \langle H_0(p_1), p_2 \rangle + (\xi_1 \eta_3 - \xi_2 \eta_3) \langle H_0(p_1), p_3 \rangle$$

$$+ \ldots + (\xi_1 \eta_n - \xi_2 \eta_n) \langle H_0(p_1), p_n \rangle + (\xi_3 \eta_1 - \xi_3 \eta_2) \langle H_0(p_3), p_1 \rangle$$

$$+ \ldots + (\xi_n \eta_1 - \xi_n \eta_2) \langle H_0(p_n), p_1 \rangle.$$
(4)

Let now $\tilde{x} = \xi_1 p_1 + \xi_2 p_2 - \xi_3 p_3 - \ldots - \xi_n p_n$ and $\tilde{y} = \eta_1 p_1 + \eta_2 p_2 - \eta_3 p_3 - \ldots - \eta_n p_n$. As above, we have that $\varphi_{\tilde{y}}(\cdot) = \langle \cdot, \tilde{y} \rangle$ is a support functional at \tilde{x} . Consequently,

$$0 = \langle H_0(\tilde{x}), \tilde{y} \rangle = (\xi_1 \eta_2 - \xi_2 \eta_1) \langle H_0(p_1), p_2 \rangle + (-\xi_1 \eta_3 + \xi_2 \eta_3) \langle H_0(p_1), p_3 \rangle + \dots + (-\xi_1 \eta_n + \xi_2 \eta_n) \langle H_0(p_1), p_n \rangle + (-\xi_3 \eta_1 + \xi_3 \eta_2) \langle H_0(p_3), p_1 \rangle$$
(5)
$$+ \dots + (-\xi_n \eta_1 + \xi_n \eta_2) \langle H_0(p_n), p_1 \rangle.$$

Summing (4) and (5) we obtain $2(\xi_1\eta_2 - \xi_2\eta_1)\langle H_0(p_1), p_2 \rangle = 0$, that is, $\langle H(p_1), p_2 \rangle = \langle H_0(p_1), p_2 \rangle = 0$.

Step 2. Let $\eta \in \mathcal{H}$, $\|\eta\|_{\mathcal{H}} = 1$, $p = \eta \otimes \eta$, $x \in \mathcal{K}(\mathcal{H})^h$, and let $\operatorname{Tr}(xq) = 0$ for any one dimensional projection q with qp = 0. Then there exists $f \in \mathcal{H}$ such that $x = \eta \otimes f + f \otimes \eta - (\eta \otimes \eta)(f \otimes \eta)$, $\|f\|_{\mathcal{H}} \leq \|x\|_{\infty}$.

Indeed, if q is an one dimensional projection with qp = 0 then $qxq = \alpha q$ for some $\alpha \in \mathbb{R}$, and $0 = \operatorname{Tr}(xq) = \operatorname{Tr}(qxq) = \operatorname{Tr}(\alpha q) = \alpha$, that is, $\alpha = 0$ and qxq = 0. Let $e \in \mathcal{P}(\mathcal{H})$, $\dim e(\mathcal{H}) = 1$, ep = 0, eq = 0, y = (q + e)x(q + e). If $y \neq 0$ then there exists $r \in \mathcal{P}(\mathcal{H})$, $\dim r(\mathcal{H}) = 1$ such that $r \leq q + e$ and $rxr = ryr = \beta r$ for some $0 \neq \beta \in \mathbb{R}$. Since rp = 0, it follows that $0 = \operatorname{Tr}(xr) = \operatorname{Tr}(rxr) = \beta \neq 0$. Thus y = 0. Continuing this process, we construct a sequence of finite-dimensional projections $g_n \uparrow (I - p)$ such that $g_n xg_n = 0$ for all $n \in \mathbb{N}$, where I(h) = h, $h \in \mathcal{H}$. Consequently, (I - p)x(I - p) = 0.

If $f = x(\eta)$ then $xp = f \otimes \eta$ and $px = \eta \otimes f$. In addition,

$$(I-p)xp(h) = (I-p)x((h,\eta)\eta) = (h,\eta)(I-p)f, \quad h \in \mathcal{H},$$

that is, $(I-p)xp = (I-p)f \otimes \eta$. Therefore,

$$x = px + (I - p)xp = \eta \otimes f + (I - p)f \otimes \eta \text{ and } ||f||_{\mathcal{H}} \leq ||x||_{\infty}.$$

Step 3. Let $\eta \in \mathcal{H}$, $\|\eta\|_{\mathcal{H}} = 1$, $p = \eta \otimes \eta$. Then there exists $f \in \mathcal{H}$ such that

$$H(\eta \otimes \eta) = \eta \otimes f + f \otimes \eta, \quad ||f||_{\mathcal{H}} \leq ||H||.$$

Indeed, if $x = H(\eta \otimes \eta)$, $\xi \in \mathcal{H}$, $(\eta, \xi) = 0$, $q = \xi \otimes \xi$, then by Step 1 we obtain that $(x(\xi), \xi) = \langle x, \xi \otimes \xi \rangle = \operatorname{Tr}(x \cdot \xi \otimes \xi) = 0$. Using Step 2, we have that there exists $f \in \mathcal{H}$ such that $H(\eta \otimes \eta) = x = \eta \otimes f + f \otimes \eta - (\eta \otimes \eta)(f \otimes \eta)$. Since H is a skew-Hermitian operator, it follows that

$$0 = \langle H(\eta \otimes \eta), \eta \otimes \eta \rangle = \langle \eta \otimes f + f \otimes \eta - (\eta \otimes \eta)(f \otimes \eta), \eta \otimes \eta \rangle$$

= Tr((\eta \overline \eta)(\eta \overline f + f \overline \eta - (\eta \overline \eta)(f \overline \eta)))
= Tr((\eta \overline \eta)(\eta \overline f)) = ((\eta \overline f)(\eta), \eta) = (\eta, f).

Thus $(\eta, f) = 0$ and $x = \eta \otimes f + f \otimes \eta - (\eta \otimes \eta)(f \otimes \eta) = \eta \otimes f + f \otimes \eta$. In addition,

$$\|f\|_{\mathcal{H}} \leqslant \|x\|_{\infty} \leqslant \|x\|_{\mathcal{C}_{E}} = \|H(\eta \otimes \eta)\|_{\mathcal{C}_{E}} \leqslant \|H\| \cdot \|\eta \otimes \eta\|_{\mathcal{C}_{E}} = \|H\| \cdot \|\eta \otimes \eta\|_{\infty} = \|H\|.$$

Step 4. There exists $a \in \mathcal{B}(\mathcal{H})$ such that $H(x) = ax + xa^*$ for every $x \in \mathcal{C}_E^h$.

Let $\{p_i\}_{i=1}^{\infty} = \{\eta_i \otimes \eta_i\}_{i=1}^{\infty}$ be a basis in real linear space $\mathcal{F}(\mathcal{H})^h$, where $\{\eta_i\}_{i=1}^{\infty}$ is an orthonormal basis of \mathcal{H} . For every $\eta_i \in \mathcal{H}$ there exists $f_i \in \mathcal{H}$ such that $H(\eta_i \otimes \eta_i) = \eta_i \otimes f_i + f_i \otimes \eta_i$, and $\|f_i\|_{\mathcal{H}} \leq \|H\|$ for all $i \in \mathbb{N}$ (see Step 3). Define a linear operator $a: \mathcal{H} \to \mathcal{H}$ setting $a(\eta_i) = f_i$. Since $\|f_i\|_{\mathcal{H}} \leq \|H\|$ for all $i \in \mathbb{N}$, it follows that $a \in \mathcal{B}(\mathcal{H})$, in addition, $H(p_i) = \eta_i \otimes a(\eta_i) + a(\eta_i) \otimes \eta_i$. Since $\eta_i \otimes a(\eta_i) = (\eta_i \otimes \eta_i)a^*$ and $a(\eta_i) \otimes \eta_i = a(\eta_i \otimes \eta_i)$, it follows that $H(x) = ax + xa^*$ for all $x \in \mathcal{F}(\mathcal{H})^h$.

If $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is a separable space then $\mathcal{F}(H)^h$ is dense in $(\mathcal{C}^h_E, \|\cdot\|_{\mathcal{C}_E})$. Consequently, $H(x) = ax + xa^*$ for all $x \in \mathcal{C}^h_E$.

Let now $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ be a perfect Banach symmetric ideal. Repeating the proof of Theorem 4.4 [14] that establishes the $\sigma(\mathcal{C}_E, \mathcal{C}_E^{\times})$ -continuity of the Hermitian operators acting in $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$, we obtain that the skew-Hermitian operator H also $\sigma(\mathcal{C}_E^h, (\mathcal{C}_E^{\times})^h)$ -continuous. Since the space $\mathcal{F}(\mathcal{H})^h$ is $\sigma(\mathcal{C}_E^h, (\mathcal{C}_E^{\times})^h)$ -dense in \mathcal{C}_E^h , it follows that $H(x) = ax + xa^*$ for all $x \in \mathcal{C}_E^h$.

Step 5. a = ib for some $b \in \mathcal{B}(\mathcal{H})^h$.

Indeed, if $a = a_1 + ia_2$, $a_1, a_2 \in \mathcal{B}(\mathcal{H})^h$, then

$$H(x) = ax + xa^* = a_1x + xa_1 + i(a_2x - xa_2) = S_1(x_1) + S_2(x),$$

where $S_1(x) = a_1x + xa_1$, $S_2(x) = i(a_2x - xa_2)$, $x \in \mathcal{C}_E^h$. Since H and S_2 are skew-Hermitian, it follows that $S_1 = H - S_2$ is also skew-Hermitian.

If $p \in \mathcal{P}(\mathcal{H})$, dim $p(\mathcal{H}) = 1$, then the lineal functional $\varphi(y) = \langle y, p \rangle = \text{Tr}(yp), y \in \mathcal{C}_E^h$, is support functional at p. Thus $\text{Tr}(pa_1p + pa_1) = \text{Tr}(S_1(p)p) = 0$, that is, $-\text{Tr}(pa_1) =$ $\text{Tr}(pa_1p) = \text{Tr}(pa_1)$. This means that $\text{Tr}(pa_1) = 0$ for all $p \in \mathcal{P}(\mathcal{H})$ with dim $p(\mathcal{H}) = 1$. Consequently, $\text{Tr}(xa_1) = 0$ for all $x \in \mathcal{F}(\mathcal{H})$, and by [26, Lemma 2.1] we have $a_1 = 0$. Therefore, $a = ia_2$. \triangleright

4. The Proof of Theorem 2

Let $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ be a Banach symmetric ideal. We say that a bounded linear operator $T: \mathcal{C}_E^h \to \mathcal{C}_E^h$ has the property **(P)** if for any $a \in \mathcal{B}(\mathcal{H})^h$ there are operators $b \in \mathcal{B}(\mathcal{H})^h$ and $c \in \mathcal{B}(\mathcal{H})^h$ such that T(i(bx-xb)) = i(aT(x)-T(x)a) and T(i(ax-xa)) = i(cT(x)-T(x)c) for all $x \in \mathcal{C}_E^h$.

It is clear that a bounded linear bijection $T: \mathcal{C}_E^h \to \mathcal{C}_E^h$ has the property (**P**) if and only if T^{-1} has the property (**P**).

Lemma 1. Let $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ be a separable or a perfect Banach symmetric ideal other than \mathcal{C}_2 , and let $V : \mathcal{C}_E^h \to \mathcal{C}_E^h$ be a surjective isometry. Then an isometry V has the property (**P**).

 $\exists If \ a \in \mathcal{B}(\mathcal{H})^h \text{ then the linear operator } H : \mathcal{C}^h_E \to \mathcal{C}^h_E \text{ defined by } H(x) = i(xa - ax), \\ x \in \mathcal{C}^h_E, \text{ is a skew-Hermitian operator. By the Proposition 1 the operator } V^{-1} \cdot H \cdot V \text{ is also skew-Hermitian. Using the Theorem 3 we obtain that there exists } b \in \mathcal{B}(\mathcal{H})^h \text{ such that } \\ V^{-1} \cdot H \cdot V(x) = i(bx - xb), \text{ that is, } i(aV(x) - V(x)a) = V(i(bx - xb)) \text{ for all } x \in \mathcal{C}^h_E.$

Similarly, $V \cdot H \cdot V^{-1}$ is a skew-Hermitian operator. Hence, there exists an operator $c \in \mathcal{B}(\mathcal{H})^h$ such that $V \cdot H \cdot V^{-1}(y) = i(cy - yc)$ for all $y \in \mathcal{C}^h_E$. If $V^{-1}(y) = x$, then V(i(ax - xa)) = i(cV(x) - V(x)c) for all $x \in \mathcal{C}^h_E$. \triangleright

Let $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ be a Banach symmetric ideal, $0 \neq x \in \mathcal{C}_E^h$, and let $Z(x) = \{x\}' \cap \mathcal{B}(\mathcal{H})^h = \{y \in \mathcal{B}(\mathcal{H})^h : xy = yx\}$. A non-zero operator $x \in \mathcal{C}_E^h$ is said to be a \mathcal{C}_E^h -maximal if Z(x) = Z(y) for any $0 \neq y \in \mathcal{C}_E^h$ with $Z(x) \subset Z(y)$ (cf. [27, Definition 1.4]).

Lemma 2. The following conditions are equivalent:

- (i) $x \in \mathcal{C}_E^h$ is a \mathcal{C}_E^h -maximal operator;
- (ii) $x = \alpha p$, where $0 \neq p \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H}), \ 0 \neq \alpha \in \mathbb{R}$.

 \triangleleft (i) \Longrightarrow (ii). Since $x \in \mathcal{C}_E^h$, it follows that $x = \sum_{i=1}^t \lambda_i p_i$, $t \in \mathbb{N}$ or $t = \infty$ (the series converges with respect to the norm $\|\cdot\|_{\infty}$), where $0 \neq p_i \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$, $p_i p_j = 0$, $i \neq j$, $0 \neq \lambda_i \in \mathbb{R}$, for all $i, j = 1, \ldots, t$. If $y \in Z(x)$ then $yp_i = p_i y$ [28, Ch.1, §4, p. 17], that is, $Z(x) \subset Z(p_i)$ for all $i = 1, \ldots, t$. Since, x is a \mathcal{C}_E^h -maximal operator, it follows that $Z(x) = Z(p_i)$, thus $Z(p_i) = Z(p_k)$ for all $i, k = 1, \ldots, t$.

Suppose that $t \ge 2$. As $Z(p_1) = Z(p_2)$, we have

$$\{p_1\}'' = \{p_2\}'' = \{\alpha \cdot p_2 + \beta \cdot (I - p_2) : \alpha, \beta \in \mathbb{C}\},\$$

that is, $p_1 = \alpha_0 \cdot p_2 + \beta_0 \cdot (I - p_2)$ for some $\alpha_0, \beta_0 \in \mathbb{C}$. Consequently, $0 = p_1 p_2 = \alpha_0 \cdot p_2$, and $\alpha_0 = 0$. Therefore $p_1 = \beta_0 \cdot (I - p_2)$, which contradicts the inclusion $p_1 \in \mathcal{F}(\mathcal{H})$. Thus t = 1 and $x = \lambda_1 p_1$.

(ii) \Longrightarrow (i). Let $x = \alpha p$, where $0 \neq p \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$, $0 \neq \alpha \in \mathbb{R}$. If $0 \neq y \in \mathcal{C}_E^h$ and $Z(x) \subset Z(y)$ then $Z(p) = Z(x) \subset Z(y)$, and $y \in \{y\}'' \subseteq \{p\}'' = \{\alpha \cdot p + \beta \cdot (I-p) : \alpha, \beta \in \mathbb{C}\}$, that is, $y = \alpha_0 \cdot p + \beta_0 \cdot (I-p)$ for some $\alpha_0, \beta_0 \in \mathbb{C}$. Since y is a compact operator, it follows that $\beta_0 = 0$, that is, $y = \alpha_0 \cdot p$ and Z(x) = Z(y). \triangleright

Lemma 3. Let $T: \mathcal{C}_E^h \to \mathcal{C}_E^h$ be a bounded linear bijective operator with the property (**P**). Then T(x) is a \mathcal{C}_E^h -maximal operator for any \mathcal{C}_E^h -maximal operator $x \in \mathcal{C}_E^h$.

 \triangleleft Suppose that $x \in \mathcal{C}_E^h$ is a \mathcal{C}_E^h -maximal operator, but T(x) is not \mathcal{C}_E^h -maximal, that is, there exists $z \in \mathcal{C}_E^h$ such that $Z(T(x)) \subset Z(z)$ and $Z(T(x)) \neq Z(z)$. Since T is a bijection, z = T(y) for some $y \in \mathcal{C}_E^h$. Hence, $Z(T(x)) \subset Z(T(y))$ and $Z(T(x)) \neq Z(T(y))$.

We show that $Z(x) \subset Z(y)$. Since an operator T has property (**P**), it follows that for $a \in Z(x)$ there exists $b \in \mathcal{B}(\mathcal{H})^h$ such that

$$T(i(ac-ca)) = i(bT(c) - T(c)b)$$
(6)

for all $c \in \mathcal{C}_E^h$. Using equations (6) and T(i(ax - xa)) = T(0) = 0, and the injectivity of the mapping T, we obtain that bT(x) = T(x)b, that is, $b \in Z(T(x)) \subset Z(T(y))$. Consequently, T(i(ay - ya)) = 0 and ay - ya = 0 (see (6)), i. e. $a \in Z(y)$. Therefore $Z(x) \subset Z(y)$, and by the \mathcal{C}_E^h -maximality of the operator x we obtain that Z(x) = Z(y).

Since $Z(T(x)) \neq Z(T(y))$, there exists an operator $a \in Z(T(y))$ such that $a \notin Z(T(x))$. By the property (**P**) we can choose $b \in \mathcal{B}(\mathcal{H})^h$ such that

$$T(i(bc - cb)) = i(aT(c) - T(c)a)$$

$$\tag{7}$$

for all $c \in \mathcal{C}_E^h$. Thus T(i(by - yb)) = 0, and by - yb = 0, that is, $b \in Z(y)$. Besides, $aT(x) - T(x)a \neq 0$ implies that $bx - xb \neq 0$ (see (7)), that is, $b \notin Z(x)$, which contradicts the equality Z(x) = Z(y). \triangleright

Lemma 4. Let $V : \mathcal{C}_E^h \to \mathcal{C}_E^h$ be a surjective linear isometry with the property (**P**). Then for every $p \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ there exists $q_p \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ such that $V(p) = q_p$ or $V(p) = -q_p$.

 \triangleleft Let $0 \neq p_i \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$, $i = 1, 2, p_1 p_2 = 0$. Since p_i is a \mathcal{C}_E^h -maximal operator (Lemma 2), it follows that $V(p_i)$ is a \mathcal{C}_E^h -maximal operator too, i = 1, 2 (Lemma 3). Consequently, there exist $0 \neq q_i \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$, and $0 \neq \alpha_i \in \mathbb{R}$ such that $V(p_i) = \alpha_i q_i$, i = 1, 2 (Lemma 2). Since $p_1 p_2 = 0$, it follows that $(p_1 + p_2) \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ and $V(p_1 + p_2) = \alpha_3 q_3$ for some non-zero projection $q_3 \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ and $0 \neq \alpha_3 \in \mathbb{R}$ (Lemma 2). Therefore $\frac{\alpha_1}{\alpha_3} q_1 + \frac{\alpha_2}{\alpha_3} q_2 = q_3$. By [29] there are four possibilities:

(i) $\frac{\alpha_1}{\alpha_3} = 1$, $\frac{\alpha_2}{\alpha_3} = 1$ if $q_1 q_2 = 0$;

- (ii) $\frac{\alpha_1}{\alpha_3} = 1$, $\frac{\alpha_2}{\alpha_3} = -1$ if $q_1q_2 = q_2$;
- (iii) $\frac{\alpha_1}{\alpha_3} = -1, \ \frac{\alpha_2}{\alpha_3} = 1$ and $q_1q_2 = q_1;$
- (iv) $\frac{\alpha_1}{\alpha_3} + \frac{\alpha_2}{\alpha_3} = 1$ and $(q_1 q_2)^2 = 0$ if $q_1 q_2 \neq q_2 q_1$.

The case (iv) is impossible because $||(q_1 - q_2)||_{\infty}^2 = ||(q_1 - q_2)^2||_{\infty} = 0$, which contradicts the bijectivity of V. In other cases we have $V(p_2) = \alpha q_2$ or $V(p_2) = -\alpha q_2$, where $\alpha = \alpha_1$. Consequently, $V(p) = \alpha q_p$ or $V(p) = -\alpha q_p$ for an arbitrary $0 \neq p \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H}), p_1 p = 0$.

Let now $0 \neq e \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ and $p_1e \neq 0$. Then there exists a non-zero finite dimensional projection f, such that $p_1f = 0$ and ef = 0. According to above, we have $\alpha_1q_1 = V(p_1) = \alpha_fq_{p_1}$ or $V(p_1) = -\alpha_fq_{p_1}$ and $V(e) = \alpha_fq_e$ or $V(e) = -\alpha_fq_e$ for some non-zero finite dimensional projections q_f, q_e and for non-zero real number α_f . Consequently, $q_1 = q_{p_1}$ and $\alpha_1 = \pm \alpha_f$. In particular, $V(e) = \alpha_1q_e$ or $V(f) = -\alpha_1q_e$.

If $e \in \mathcal{P}(\mathcal{H})$ and dim $e(\mathcal{H}) = 1$, then $1 = ||e||_{\mathcal{C}_E} = ||V(e)||_{\mathcal{C}_E} = |\alpha|||q_e||_{\mathcal{C}_E} \ge |\alpha|||q_e||_{\infty} = |\alpha|$, that is, $|\alpha| \le 1$.

Replacing the isometry V with V^{-1} , we get that $V^{-1}(p) = \beta r_p$ or $V^{-1}(p) = -\beta r_p$ for arbitrary $p \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$, where $r_p \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ and β does not depend on the projection p. In particular, if $e \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ and dim $e(\mathcal{H}) = 1$, then $1 = ||e||_{\mathcal{C}_E} = ||V^{-1}(e)||_{\mathcal{C}_E} = ||\beta|||r_e||_{\mathcal{C}_E} \ge |\beta|||r_e||_{\infty} = |\beta|$, i.e. $|\beta| \le 1$.

Therefore, for $p \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ we obtain that $V(p) = \pm \alpha q_p$, and $p = V^{-1}(\pm \alpha q) = \pm (\alpha \beta)r_q$. Hence $|\alpha\beta| = 1$ and $|\alpha| = 1$. \triangleright

We say that the norm $\|\cdot\|_{\mathcal{C}_E}$ is a not uniform if $\|p\|_{\mathcal{C}_E} > 1$ for any $p \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ with $\dim p(\mathcal{H}) > 1$.

Lemma 5. Let $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ be a Banach symmetric ideal with not uniform norm, and let $V: \mathcal{C}_E^h \to \mathcal{C}_E^h$ be a surjective isometry with the property (**P**). Then V(p) or (-V)(p) is one dimensional projection for any one dimensional projection p.

 \triangleleft Let $p \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$, dim $p(\mathcal{H}) = 1$. By Lemma 4 we have that there exists $q_p \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ such that $V(p) = q_p$ or $V(p) = -q_p$. If dim $q_p(\mathcal{H}) > 1$ then $1 = ||p||_{\mathcal{C}_E} = ||V(p)||_{\mathcal{C}_E} = ||q_p||_{\mathcal{C}_E} > 1$, what is wrong. \triangleright

Lemma 6. Let $(C_E, \|\cdot\|_{C_E})$ and an isometry V be the same as in the conditions of the Lemma 5. Then

$$V(\mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})) \subseteq \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$$

or

$$(-V)(\mathcal{P}(\mathcal{H})\cap\mathcal{F}(\mathcal{H}))\subseteq\mathcal{P}(\mathcal{H})\cap\mathcal{F}(\mathcal{H}).$$

 $\exists \text{Let } \mathcal{P}_1(\mathcal{H}) = \{p \in \mathcal{P}(\mathcal{H}) : \dim p(\mathcal{H}) = 1\}, \text{ and let } p, e \in \mathcal{P}_1(\mathcal{H}). \text{ By Lemma 5, there} \\ \text{exists } q, r \in \mathcal{P}_1(\mathcal{H}) \text{ such that } V(p) = q \text{ or } V(p) = -q \text{ and } V(e) = r \text{ or } V(e) = -r. \text{ If} \\ V(p) = q, V(e) = -r \text{ then } q - r = V(p+q) = \pm f \text{ for some } 0 \neq f \in \mathcal{P}(\mathcal{H}) \text{ (see Lemma 4)}, \\ \text{which is not possible because } q, r \in \mathcal{P}_1(\mathcal{H}). \text{ Similarly, the case } V(p) = -q, \quad V(e) = r \text{ is} \\ \text{also impossible. Consequently, } V(\mathcal{P}_1(\mathcal{H})) \subseteq \mathcal{P}_1(\mathcal{H}) \text{ or } (-V)(\mathcal{P}_1(\mathcal{H})) \subseteq \mathcal{P}_1(\mathcal{H}). \text{ Since each} \\ \text{projector } p \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H}) \text{ is the final sum of one-dimensional projectors, it follows that} \\ V(\mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})) \subseteq \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H}) \text{ or } (-V)(\mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})) \subseteq \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H}). \end{cases}$

Corollary 1. Let $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ and V be the same as in the conditions of the Lemma 5. Then

- (i) V(p)V(e) = 0 for any $p, e \in \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ with pe = 0;
- (ii) V is a bijection from $\mathcal{P}_1(\mathcal{H})$ onto $\mathcal{P}_1(\mathcal{H})$.

Item (ii) directly follows from Lemma 5. \triangleright

 \triangleleft PROOF OF THEOREM 2. We suppose that $V(\mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})) \subseteq \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ (the case $(-V)(\mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})) \subseteq \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ is proved by replacing V with (-V)). Let

$$x = \sum_{n=1}^{k} \lambda_n p_n \in \mathcal{F}(\mathcal{H})^h, \quad p_n \in \mathcal{P}_1(\mathcal{H}), \ p_n p_m = 0,$$
$$n \neq m, \ 0 \neq \lambda_n \in \mathbb{R}, \ n, m = 1, \dots, k.$$

Since $V(p_n) \cdot V(p_m) = 0$, $n \neq m$ (Corollary 1 (i)), it follows that

$$V(x^2) = V\left(\sum_{n=1}^k \lambda_n^2 p_n\right) = \sum_{n=1}^k \lambda_n^2 V(p_n) = V(x)^2$$

and

$$\operatorname{Tr}(V(x)) = \sum_{n=1}^{k} \lambda_n \operatorname{Tr}(V(p_n)) = \sum_{n=1}^{k} \lambda_n = \operatorname{Tr}(x).$$

If $p, e, q, f \in \mathcal{P}_1(\mathcal{H}), V(p) = q, V(e) = f$, then $2\operatorname{Tr}(ne) = \operatorname{Tr}(ne) + \operatorname{Tr}(ne) = 0$

$$2\operatorname{Tr}(pe) = \operatorname{Tr}(pe) + \operatorname{Tr}(ep) = \operatorname{Tr}((p+e)^2 - p - e)$$

= Tr(V((p+e)^2)) - 2 = Tr(V(p+e))^2 - 2 = Tr((q+f)^2) - 2 = 2Tr(qf).

Consequently, $\operatorname{Tr}(pe) = \operatorname{Tr}(V(p)V(e))$ for all $p, e \in \mathcal{P}_1(H)$. By [30, Ch. 3, § 3.2, Theorem 3.2.8] we obtain that there exists an unitary or anti-unitary operator u such that $V(p) = upu^*$ for all $p \in \mathcal{P}_1(H)$. Thus $V(x) = u^*xu$ for all $x \in \mathcal{F}(H)^h$.

If $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is a separable space then $\mathcal{F}(H)^h$ is dense in $(\mathcal{C}^h_E, \|\cdot\|_{\mathcal{C}_E})$. Consequently, $V(x) = u^* x u$ (respectively, $V(x) = -u x u^*$) for all $x \in \mathcal{C}^h_E$.

If $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is a perfect Banach symmetric ideal, then V is $\sigma(\mathcal{C}_E, \mathcal{C}_E^{\times})$ -continuous (see proof of Step 4 in Theorem 4). Since $\mathcal{F}(H)^h$ is $\sigma(\mathcal{C}_E, \mathcal{C}_E^{\times})$ -dense in $(\mathcal{C}_E^h, \|\cdot\|_{\mathcal{C}_E})$, it follows that $V(x) = u^* x u$ (respectively, $V(x) = -u x u^*$) for all $x \in \mathcal{C}_E^h$.

In the case $(-V)(\mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})) \subseteq \mathcal{P}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H})$ we get that $V(x) = -uxu^*$ for all $x \in \mathcal{C}_E^h$. \triangleright

References

- 1. Banach, S. Theorie des Operations Lineaires, Warsaw, 1932.
- Lamperti, J. On the Isometries of Some Function Spaces, Pacific Journal of Mathematics, 1958, vol. 8, no. 3, pp. 459–466. DOI: 10.2140/pjm.1958.8.459.
- Lumer, G. On the Isometries of Reflexive Orlicz Spaces, Annales de l'Institut Fourier, 1963, vol. 13, no. 1, p. 99–109. DOI: 10.5802/aif.132.
- Zaidenberg, M. G. On Isometric Classification of Symmetric Spaces, Doklady Akademii Nauk SSSR, 1977, vol. 234, pp. 283–286 (in Russian).
- Zaidenberg, M. G. A Representation of Isometries of Functional Spaces, *Zhurnal Matematicheskoi Fiziki*, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 1997, vol. 4, no. 3, pp. 339– 347.
- Kalton, N. J. and Randrianantoanina, B. Surjective Isometries on Rearrangment Invariant Spaces, The Quarterly Journal of Mathematics, 1994, vol. 45, no. 3, pp. 301–327. DOI: 10.1093/qmath/45.3.301.
- Braverman, M. Sh. and Semenov, E. M. Isometries on Symmetric Spaces, Doklady Akademii Nauk SSSR, 1974, vol. 217, pp. 257–259 (in Russian).

- Braverman, M. Sh. and Semenov, E. M. Isometries on Symmetric Spaces, Trudy NII Matem. Voronezh. Gos. Univ., 1975, vol. 17, pp. 7–18 (in Russian).
- Arazy, J. Isometries on Complex Symmetric Sequence Spaces, Mathematische Zeitschrift, 1985, vol. 188, no. 3, pp. 427–431. DOI: 10.1007/BF01159187.
- Aminov, B. R. and Chilin, V. I. Isometries and Hermitian Operators on Complex Symmetric Sequence Spaces, Siberian Advances in Mathematics, 2017, vol. 27, no. 4, pp. 239–252. DOI: 10.3103/S105513 4417040022.
- 11. Arazy, J. The Isometries of C_p , Israel Journal of Mathematics, 1975, vol. 22, no. 3–4, pp. 247–256. DOI: 10.1007/BF02761592.
- Fleming, R. J. and Jamison, J. E. Isometries on Banach Spaces: Vector-Valued Function Spaces, Chapman-Hall/CRC, 2008.
- Sourour, A. Isometries of Norm Ideals of Compact Operators, Journal of Functional Analysis, 1981, vol. 43, no. 1, pp. 69–77. DOI: 10.1016/0022-1236(81)90038-0.
- Aminov, B. R. and Chilin, V. I. Isometries of Perfect Norm Ideals of Compact Operators, Studia Math., 2018, vol. 241(1), pp. 87–99. DOI: 10.4064/sm170306-19-4.
- Garling, D. J. H. On Ideals of Operators in Hilbert Space, Proceedings of the London Mathematical Society, 1967, vol. 17, no. 1, 115–138. DOI: 10.1112/plms/s3-17.1.115.
- Nagy, G. Isometries of the Spaces of Self-Adjoint Traceless Operators, *Linear Algebra and its Applications*, 2015, vol. 484, pp. 1–12. DOI: 10.1016/j.laa.2015.06.026.
- 17. Bennett, C. and Sharpley, R. Interpolation of Operators, Academic Press Inc., 1988.
- Simon, B. Trace Ideals and Their Applications, Mathematical Surveys and Monographs, vol. 120, 2nd edition, Providence, R. I., Amer. Math. Soc., 2005.
- Kalton, N. J. and Sukochev, F. A. Symmetric Norms and Spaces of Operators, Journal für die Reine und Angewandte Mathematik, 2008, vol. 621, pp. 81–121. DOI: 10.1515/CRELLE.2008.059.
- Lord, S., Sukochev, F. and Zanin, D. Singular Traces. Theory and Applications, Berlin/Boston, Walter de Gruyter GmbH, 2013.
- 21. Gohberg, I. C. and Krein, M. G. Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, vol. 18, Providence, R. I., Amer. Math. Soc., 1969.
- 22. Krein, M. G., Petunin, Ju. I. and Semenov, E. M. Interpolation of Linear Operators, Translations of Mathematical Monographs, vol. 54, Providence, R. I., Amer. Math. Soc., 1982.
- 23. Lindenstrauss, J. and Tzafriri, L. Classical Banach Spaces, Berlin and N.Y., Springer-Verlag, 1996.
- Dodds, P. G., Dodds, T. K. and Pagter, B. Noncommutative Köthe Duality, Transactions of the American Mathematical Society, 1993, vol. 339, no. 2, pp. 717–750. DOI: 10.2307/2154295.
- Dragomir, S. S. Semi-Inner Products and Applications, N.Y., Hauppauge, Nova Science Publishers Inc., 2004.
- Ayupov, Sh. and Kudaybergenov, K. 2-Local Derivations and Automorphisms on B(H), Journal of Mathematical Analysis and Applications, 2012, vol. 395, no. 1, pp. 15–18. DOI: 10.1016/j.jmaa. 2012.04.064.
- Dolinar, G., Guterman, A., Kuzma, B. and Oblak, P. Extremal Matrix Centralizers, Linear Algebra and its Applications, 2013, vol. 438, no. 7, pp. 2904–2910. DOI: 10.1016/j.laa.2012.12.010.
- 28. Schatten, R. Norm Ideals of Completely Continuous Operators, Berlin and N.Y., Springer-Verlag, 1960.
- Baksalary, J. K. and Baksalary, O. M. Idempotency of Linear Combinations of Two Idempotent Matrices, *Linear Algebra and its Applications*, 2000, vol. 321, no. 1–3, pp. 3–7. DOI: 10.1016/S0024-3795(00)00225-1.
- Bratteli, O. and Robinson, D. W. Operator Algebras and Quantum Statistical Mechaniks, N.Y.– Heidelber–Berlin, Springer-Verlag, 1979.

Received 13 June, 2019

BEHZOD R. AMINOV National University of Uzbekistan, Vuzgorodok, Tashkent 100174, Uzbekistan, *Teacher* E-mail: aminovbehzod@gmail.com VLADIMIR I. CHILIN National University of Uzbekistan, Vuzgorodok, Tashkent 100174, Uzbekistan *Professor* E-mail: vladimirchil@gmail.com, chilin@ucd.uz

Владикавказский математический журнал 2019, Том 21, Выпуск 4, С. 11–24

ИЗОМЕТРИИ ДЕЙСТВИТЕЛЬНЫХ ПОДПРОСТРАНСТВ САМОСОПРЯЖЕННЫХ ОПЕРАТОРОВ В БАНАХОВЫХ СИММЕТРИЧНЫХ ИДЕАЛАХ

Аминов Б. Р.¹, Чилин В. И.¹

¹ Национальный университет Узбекистана, Узбекистан, 100174, Ташкент, Вузгородок E-mail: aminovbehzod@gmail.com,

vladimirchil@gmail.com, chilin@ucd.uz

Аннотация. Пусть $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ банахов симметричный идеал компактных операторов, действующих в комплексном сепарабельном бесконечномерном гильбертовом \mathcal{H} . Пусть $\mathcal{C}_E^h = \{x \in \mathcal{C}_E : x = x^*\}$ действительное банахово подпространство самосопряженных операторов в $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$. Доказывается, что в случае, когда $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ есть сепарабельный или совершенный банахов симметричный идеал $(\mathcal{C}_E \neq \mathcal{C}_2)$ каждый косоэрмитовый оператор $H : \mathcal{C}_E^h \to \mathcal{C}_E^h$ имеет следующий вид H(x) = i(xa - ax) для некоторого $a^* = a \in \mathcal{B}(\mathcal{H})$ и для всех $x \in \mathcal{C}_E^h$. Используя это описание косоэрмитовых операторов мы получаем следующий общий вид сюръективных линейных изометрий $V : \mathcal{C}_E^h \to \mathcal{C}_E^h$: Пусть $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ сепарабельный или совершенный банахов симметричный идеал с неравномерной нормой, т. е. $\|p\|_{\mathcal{C}_E} > 1$ для всех конечномерных проекторов $p \in \mathcal{C}_E$ с dim $p(\mathcal{H}) > 1$, пусть $\mathcal{C}_E \neq \mathcal{C}_2$, и пусть $V : \mathcal{C}_E^h \to \mathcal{C}_E^h$ сюръективная линейная изометрия. Тогда существует такой унитарный или антиунитарный оператор *и* на \mathcal{H} , что $V(x) = uxu^*$ или $V(x) = -uxu^*$ для всех $x \in \mathcal{C}_E^h$.

Ключевые слова: симметричный идеал компактных операторов, косоэрмитовый оператор, изометрия.

Mathematical Subject Classification (2010): 46L52, 46B04.

Образец цитирования: Aminov B. R., Chilin V. I. Isometries of Real Subspaces of Self-Adjoint Operators in Banach Symmetric Ideals // Владикавк. мат. журн.—2019.—Т. 21, № 4.—С. 11–24 (in English). DOI: 10.23671/VNC.2019.21.44607.