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Abstract. The present paper is devoted to study of certain classes of homogeneous regular subalgebras
of the algebra of all complex-valued measurable functions on the unit interval. It is known that the
transcendence degree of a commutative unital regular algebra is one of the important invariants of such
algebras together with Boolean algebra of its idempotents. It is also known that if (Ω,Σ, µ) is a Maharam
homogeneous measure space, then two homogeneous unital regular subalgebras of S(Ω) are isomorphic
if and only if their Boolean algebras of idempotents are isomorphic and transcendence degrees of these
algebras coincide. Let S(0, 1) be the algebra of all (classes of equivalence) measurable complex-valued
functions and let AD(n)(0, 1) (n ∈ N ∪ {∞}) be the algebra of all (classes of equivalence of) almost
everywhere n-times approximately differentiable functions on [0, 1]. We prove that AD(n)(0, 1) is a regular,
integrally closed, ρ-closed, c-homogeneous subalgebra in S(0, 1) for all n ∈ N ∪ {∞}, where c is the
continuum. Further we show that the algebras S(0, 1) and AD(n)(0, 1) are isomorphic for all n ∈ N∪{∞}.
As an application of these results we obtain that the dimension of the linear space of all derivations on
S(0, 1) and the order of the group of all band preserving automorphisms of S(0, 1) coincide and are equal
to 2c. Finally, we show that the Lie algebra DerS(0, 1) of all derivations on S(0, 1) contains a subalgebra
isomorphic to the infinite dimensional Witt algebra.
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1. Introduction

In his pioneering papers [1–3] J. von Neumann built the theory on the correspondence
between complemented orthomodular lattices and regular rings and proved that if given two
∗-regular rings with orders n > 3 (which means that it contains a ring of matrices of order n),
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then any lattice isomorphism of their lattices of projections can be uniquely extended as a ring
isomorphism of the whole ring. One of important classes of ∗-regular rings are the ∗-algebra of
operators affiliated with a finite von Neumann algebra. Let M be a finite von Neumann algebra
and let S(M) be the ∗-algebra of all measurable operators affiliated with M. In particular,
in the case of type II1 von Neumann algebras the above mentioned result of J. von Neumann
means that any ring isomorphism of S(M) completely determined by its action on the lattice
of projections.

In [4] (see also [5]) it was proved that for the type II1 von Neumann algebras M and N any
ring isomorphism from S(M) onto S(N) is a real algebra isomorphism which is continuous in
the locally measure topology. Moreover, there exist a real ∗-isomorphism Ψ : S(M) → S(N)
and an invertible element a ∈ S(N) such that Φ(x) = aΨ(x)a−1 for all x ∈ S(M). Earlier
M. Mori [6] characterized lattice isomorphisms between projection lattices P (M) and P (N)
of von Neumann algebras M and N , respectively, by means of ring isomorphisms between
the algebras of locally measurable operators LS(M) and LS(N) when M and N are von
Neumann algebras of type I∞ or III.

At the same time, the structure of isomorphisms on regular algebras in the abelian
case is completely different from the non commutative one. It is well-known that if a von
Neumann algebra M is abelian, then it is ∗-isomorphic to the algebra L∞(Ω) of all (classes of
equivalence of) essentially bounded measurable complex-valued functions on a measure space
(Ω,Σ, µ) and therefore, S(M) ∼= S(Ω) is the algebra of all measurable complex functions on Ω.
In 2006 A. G. Kusraev [7] proved that S(Ω) admits discontinuous in the measure topology
automorphisms which identically act on the Boolean algebra ∇(S(Ω)) of all idempotents
of S(Ω) if and only if ∇(S(Ω)) is non atomic. In [8] we have introduced a new notion of
transcendence degree of a commutative unital regular algebra. The transcendence degree of
a commutative unital regular algebra is one of the important invariants of such algebras
togehter with Boolean algebra of its idempotents. Namely, we have proved that if (Ω,Σ, µ) is
a Maharam homogeneous measure space, then two homogeneous unital regular subalgebras
of S(Ω) are isomorphic if and only if their Boolean algebras of idempotents are isomorphic and
their transcendence degrees coincide. In the present paper we shall study some certain classes
homogeneous subalgebras of the algebra of all measurable functions on the unit interval.

The paper is organised as follows.
In Section 2 we give some preliminaries from the theory of regular algebras and formulate

open problems concerning the structure of homogeneous commutative regular algebras.
In Section 3 we shall consider the algebra AD(n)(0, 1) of all classes of complex-

valued measurable functions which consists of an almost everywhere n-times approximately
differentiable functions on [0, 1]. We prove that AD(n)(0, 1) is a regular, integrally closed,
ρ-closed, c-homogeneous subalgebra in S(0, 1) for all n ∈ N ∪ {∞}, where c is the continuum
(Theorem 3.1). Further we show that the algebras S(0, 1) and AD(n)(0, 1) are isomorphic for
all n ∈ N ∪ {∞} (Corollary 3.1).

In Section 4 we prove that the dimension of the linear space of all derivations on S(0, 1)
and the order of the group of all band preserving automorphisms of S(0, 1) both equal 2c

(see Theorem 4.1 and 4.2).

2. Regular Algebras

In the present section we give some preliminaries from the theory of regular algebras
and formulate open problems concerning the structure of homogeneous commutative regular
algebras. More detailed info concerning regular algebras can be found in [3, 9, 10].
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Recall that an algebra A is said to be regular (in the sense of von Neumann) if, for any
a ∈ A there is an element x ∈ A such that axa = a.

Let A be a commutative unital regular algebra with a unity 1 over a field F and let
∇ = ∇(A ) be the set of all idempotents A . On ∇ a partial order is defined as follows: e 6 f
if and only if ef = e. Then ∇ becomes a Boolean algebra with the greatest element 1, where
1 − e is the complement of an element e. For a ∈ A , let i(a) be the unique solution of the
equations axa = a and xax = x [11, Theorem 1.17]. The element s(a) = ai(a) ∈ ∇ is called
the support of a [4, 11].

Let µ be a finite strictly positive countable-additive measure on ∇. Define the function
ρ : A × A → R, by setting [12], [13, p. 898]:

ρ(x, y) = µ(s(x− y)), x, y ∈ A . (1)

Then A is a topological ring in the metric topology given by ρ (see [12, Proposition 2.6]).
Below we shall assume that A is a commutative unital regular algebra over an algebraically

closed field F of characteristic zero, µ is a finite strictly positive countable-additive measure
on ∇ and A is complete with respect to the metric ρ defined as in (1).

Let B be a regular subalgebra of A and let B[x] denote the algebra of all polynomials
with coefficients from subalgebra B. An element a ∈ A is said to be integral with respect
to B, if there exists a unitary polynomial p ∈ B[x], such that p(a) = 0. The integral closure
of B is the set B(i) of all elements that are integral with respect to B. A subalgebra B is
said to be integrally closed, if B(i) = B (see [12]).

Recall that x, y ∈ A differ at e ∈ ∇ provided that from fx = fy, it follows that ef = 0
for all f ∈ ∇. Clearly, this condition is equivalent to e 6 s(x− y). A subset S of A is said to
be locally linearly independent, if for an arbitrary nonzero e ∈ ∇ and each family of elements
x1, . . . , xn ∈ S that differ pairwise at e and λ1, . . . , λn ∈ F, the condition e(λ1x1 + . . . +
λnxn) = 0 implies that λ1 = . . . = λn = 0. For S ⊂ A denote by 〈S 〉 the set of elements
of the form xn1

1 · · · xnk

k , where x1, . . . , xk ∈ S and k, n1, . . . , nk ∈ N. A set S ⊂ A is called
locally algebraically independent if 〈S 〉 is locally linearly independent. A locally algebraically
independent subset S is said to be maximal if it is not a proper subset of a locally algebraically
independent set. By the Zorn’s Lemma, every locally algebraically independent set is a subset
of a maximal locally algebraically independent subset [14].

Let S be a non empty subset in A . Denote by A (S ) the least regular, integrally closed,
ρ-closed subalgebra of A generated by S and ∇. A subset S in A is called faithful, if s(x) = 1

for all x ∈ S . A commutative unital regular algebra A is called homogeneous, if there is a
faithful locally algebraically independent subset M such that A (M ) = A . Note that the
cardinality of any algebraic independent system M in A is not greater than the dimension of
the algebra A , that is, |M | 6 dimA . The largest cardinal number γ such that there exists a
faithful maximal locally algebraically independent subset M in A with the cardinality γ and
A (M ) = A is called the transcendence degree of A and is denoted as trdeg(A ) = γ. In this
case we say that A is γ-homogeneous. In other words, A is γ-homogeneous, if there is a faithful
locally algebraically independent subset M with the cardinality γ such that A (M ) = A and
any faithful system in A of cardinality bigger than γ is algebraically dependent.

Recall that a weight of the Boolean algebra ∇ is the least cardinality of sets which
generate ∇, i.e.,

τ(∇) = inf {|X| : X generates ∇} .

For 0 6= e ∈ ∇ set ∇e = {x ∈ ∇ : x 6 e} . A Boolean algebra ∇ is said to be homogeneous, if
τ(∇e) = τ(∇) for any non zero e ∈ ∇ [13, 15, 16].
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Let (Ω,Σ, µ) be a measure space with a finite strictly positive countable-additive measure µ
and let S (Ω) = S (Ω,Σ, µ) be the algebra of all (classes of) F-valued measurable functions
on (Ω,Σ, µ) . It is clear that S(Ω) is a commutative unital regular algebra. A rank metric ρ
on S(Ω) defined as in (1):

ρ(x, y) = µ ({ω ∈ Ω : x(ω) 6= y(ω)}) , x, y ∈ S(Ω).

Recall that a measure space (Ω,Σ, µ) is called Maharam homogeneous if the Boolean algebra ∇
of the algebra S(Ω) is homogeneous [13, Page 908]. An automorphism φ : ∇ → ∇ is called
measure-preserving, if µ(e) = µ(φ(e)) for all e ∈ ∇. Every measure-preserving automorphism
of ∇ can be extended to an automorphism of S(Ω), which we also denote by φ [13, p. 907].

Let G = {φ} be a group of automorphisms of ∇. The group G is called ergodic, if for
every 0 6= e ∈ ∇ the following equality holds:

∨

φ∈G φ(e) = 1.

In [8, Proposition 4.4] the following criteria of homogeneity of regular subalgebras was
obtained.

Proposition 2.1. Let (Ω,Σ, µ) be a Maharam homogeneous measure space with a finite

strictly positive countable-additive measure µ and let A be an integrally closed and ρ-clo-
sed regular subalgebra in S(Ω). Suppose that G is a measure-preserving ergodic group of

automorpisms on ∇ such that φ(A ) = A for all φ ∈ G. Then A is homogeneous.

From the above it follows that if (Ω,Σ, µ) is a Maharam homogeneous measure space,
then S(Ω) is a homogeneous commutative regular algebra. In particular, S(0, 1) is a
homogeneous commutative regular algebra (see [8]).

At the end of this Section we formulate open problems concerning homogeneous commu-
tative regular algebras.

Problem 2.1: Is any commutative regular algebra A a direct sum of homogeneous
commutative regular algebras?

Problem 2.2: Does cardinal number of any maximal faithful locally algebraically
independent subset of a homogeneous commutative regular algebra A coincide with
trdeg(A )?

Problem 2.3: Let (Ω,Σ, µ) be a Maharam homogeneous measure space with a finite
strictly positive countable-additive measure µ. Find a connection between the transcendence
degree of the algebra S(Ω) and the weight of the Boolean algebra ∇(S(Ω)).

In the next Section we shall give a solution of the last problem in the case of separable
Maharam homogeneous measure space.

3. Algebra of Approximately Differentiable Functions

Let E ⊂ R be a Lebesgue measurable set, f : E → C be a measurable function. Let t0 ∈ R
be a point in which E has density 1. Recall that a number ℓ is called the approximate limit
of f at t0 if the set {t ∈ E : |f(t) − ℓ| < ε} has density one at t0 for each ε > 0, and ℓ is
denoted by ap− limt→t0 f(t). If the approximate limit

f ′
ap(t0) := ap − lim

t→t0

f(t)− f(t0)

t− t0

exists and it is finite, then it is called approximate derivative of the function f at t0 and the
function f is called approximately differentiable at t0 [17]. Further, for the sake of convenience
the approximate derivative f ′

ap we denote as ḟ .
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Let AD(0, 1) be the set of all classes of complex-valued measurable functions which consists
of an almost everywhere approximately differentiable functions on [0, 1].

Note that by [18, Proposition 4.7 and Corollary 4.11] the algebra AD(0, 1) is a regular,
integrally closed and ρ-closed proper subalgebra in S(0, 1). Moreover,

∇ (S(0, 1)) = ∇ (AD(0, 1)) . (2)

Further, the algebra AD(0, 1) is homogeneous, and the algebras S(0, 1) and AD(0, 1) are
isomorphic [8, Theorem 4.8].

First we shall give a solution of Problem 2.3 in the case of separable Maharam homogeneous
measure space. In particular, we obtain the following connection between the transcendence
degree of the algebra S(0, 1) and the weight of the Boolean algebra ∇(S(0, 1)) :

trdegS(0, 1) = c = 2ℵ0 = 2τ(∇(S(0,1))).

Proposition 3.1. The transcendence degrees of the algebra of complex-valued measurable

functions and the algebra of approximately differentiable functions on the unit interval

coincide and are equal to continuum, i. e.

trdegS(0, 1) = trdegAD(0, 1) = c,

where c is the continuum.

⊳ Let {di : i ∈ I} be a Hamel basis for the field of real numbers over the field of rational
numbers. For each i ∈ I define a function xi ∈ S(0, 1) as follows

xi(t) = t|di|, t ∈ [0, 1]. (3)

Then {xi : i ∈ I} is a faithful locally algebraically independent subset of S(0, 1) of continuum
cardinality [19]. Since {xi : i ∈ I} ⊂ AD(0, 1), it follows that trdegAD(0, 1) > c.

Note that each x ∈ C[0, 1] is uniquely determined by its restriction on Q ∩ [0, 1]. Hence,

|C[0, 1]| 6
∣

∣

∣
CQ∩[0,1]

∣

∣

∣
= cℵ0 =

(

2ℵ0
)ℵ0 = 2ℵ0ℵ0 = 2ℵ0 = c. (4)

Note that by Lusin’s theorem, it follows that

S(0, 1) = C[0, 1]
ρ
. (5)

Further, from (4) and (5), we can conclude that

|S(0, 1)| = c. (6)

Indeed, let us embed the space S(0, 1) into the space C[0, 1]ℵ0 as follows: for any x ∈ S(0, 1)

take a sequence {xn} ⊂ C[0, 1] such that xn
ρ
→ x and consider the mapping

x ∈ S(0, 1) 7−→ {xn} ∈ C[0, 1]ℵ0 .

Note that we identify C[0, 1] with classes of measurable functions that contain continuous
functions. It is clear that this mapping is injective. Therefore

c 6 |S(0, 1)| 6
∣

∣

∣
C[0, 1]ℵ0

∣

∣

∣
= cℵ0 = c.
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So,
c 6 trdegAD(0, 1) 6 trdegS(0, 1) 6 |S(0, 1)| 6 c,

and therefore trdegS(0, 1) = trdegAD(0, 1) = c. The proof is completed. ⊲

Remark 3.1. In the previous Proposition we have show that S(0, 1) is c-homogeneous.
In the proof of Proposition 3.1 we have constructed continual faithful algebraically indepen-
dent system in S(0, 1), and by Zorn’s Lemma this system can be completed to a maximal
faithful algebraically independent system. But in general case, to point a concrete maximal
continual faithful maximal algebraically independent system in S(0, 1) is a non trivial problem.

Let AD(n)(0, 1) be the set of all classes of complex-valued measurable functions which
consists of an almost everywhere n-times approximately differentiable functions on [0, 1] and
let

AD∞(0, 1) =
⋂

n>1

AD(n)(0, 1).

Theorem 3.1. The algebra AD(n)(0, 1) is a regular, integrally closed, ρ-closed and c-ho-

mogeneous subalgebra in S(0, 1) for all n ∈ N ∪ {∞}.

⊳ First we shall prove for natural n.
The proof is by induction on n. For n = 1 all properties except homogeneity have shown

in [8], and c-homogeneity already proved in Proposition 3.1. Assume that we have proved for
n− 1.

Let us first show that AD(n)(0, 1) is regular. Let f be a almost everywhere n-times
approximately differentiable function on [0, 1], that is, [f ] ∈ AD(0, 1). Then the function g
on [0, 1] defined as

g(t) =

{

1
f(t) , if f(t) 6= 0,

0, if f(t) = 0

is also n-times approximately differentiable almost everywhere in [0, 1]. Hence, [g] ∈ AD(0, 1)
and f2g = f. This means that AD(0, 1) is regular.

Let x ∈ S(0, 1) be an integral element with respect AD(n)(0, 1). By the induc-
tion assumption AD(n−1)(0, 1) is integrally closed and therefore x ∈ AD(n−1)(0, 1).
By [12, Proposition 3.3], there exist a partition {e1, . . . , ek} of s(x) and natural numbers
n1 < n2 < . . . < nk such that for every i = 1 . . . , k the minimal degree of a unitary
polynomial gi over AD(n−1)(0, 1) for which gi(eix) = 0 is ni. Let i ∈ {1, . . . , k} be a fixed
index and let

(eix)
ni + ani−1(eix)

ni−1 + . . .+ a1(eix) + a0 = 0,

where a0, . . . , ani−1 ∈ eiAD
(n)(0, 1). Let i ∈ {1, . . . , k} be a fixed index. Taking the

approximate derivative in the last equality we obtain that

ẋp+ q = 0,

where

p = ni(eix)
ni−1 +

ni−1
∑

j=1

ajj(eix)
j−1 and q =

ni−1
∑

j=0

ȧj(eix)
j .

Note that p, q ∈ AD(n−1)(0, 1), and therefore eiẋ = −qi(p) belongs to AD(n−1)(0, 1). Thus
eix ∈ AD(n)(0, 1) for all i = 1, . . . , k, hence x ∈ AD(n)(0, 1).

Let us show that AD(n)(0, 1) is ρ-closed. Take {xk} ⊂ AD(n)(0, 1) such that xk
ρ

−→
x ∈ S(0, 1). By the induction assumption AD(n−1)(0, 1) is ρ-closed and therefore x ∈
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AD(n−1)(0, 1). By [18, Proposition 4.12], the approximate differentation operator ∂AD :
AD(0, 1) → S(0, 1) is non-expansive, that is,

ρ(∂AD(a), ∂AD(b)) 6 ρ(a, b) (7)

for all a, b ∈ AD(0, 1). Using (7) we have that ∂AD(xk)
ρ

−→ ∂AD(x). Since AD(n−1)(0, 1)
is ρ-closed and {∂AD(xk)} ⊂ AD(n−1)(0, 1), it follows that ∂AD(x) ∈ AD(n−1)(0, 1). Thus
x ∈ AD(n)(0, 1), and therefore AD(n)(0, 1) is ρ-closed.

Since AD(n)(0, 1) is invariant under rational translation modulo 1, by Proposition 2.1, it
follows that it is homogeneous.

Let {xi : i ∈ I} be a locally algebraically independent subset in S(0, 1) as in (3). Since
{xi : i ∈ I} is a subset of AD(n)(0, 1), it follows that

c 6 trdegAD(n)(0, 1) 6 trdegS(0, 1) = c,

and therefore trdegAD(n)(0, 1) = c.
Now we shall consider the case n = ∞.
Let x ∈ AD∞(0, 1) be a non zero element. Then its partial inverse i(x) ∈ AD(n)(0, 1) for

all n ∈ N. Thus i(x) ∈ AD∞(0, 1) and i(x)x2 = x. Hence AD∞(0, 1) is regular. Further, since
AD(n)(0, 1) is ρ-closed for all n, it follows that AD∞(0, 1) is also ρ-closed.

Let x ∈ S(0, 1) be an integral element with respect to AD∞(0, 1). Then x is an integral
element with respect to AD(n)(0, 1) for all n > 1. Since AD(n)(0, 1) is integrally closed, it
follows that x ∈ AD(n)(0, 1) for all n > 1. Thus x ∈ AD∞(0, 1).

Again using invariancy of AD∞(0, 1) under rational translation modulo 1, we obtain that
it is homogeneous. Further, let xi(t) = t|di| as in (3). Since {xi}i∈I ⊂ AD∞(0, 1), it follows
that trdegAD∞(0, 1) = c. The proof is completed. ⊲

Corollary 3.1. The algebras S(0, 1) and AD(n)(0, 1) are isomorphic for all n ∈ N∪{∞}.

⊳ By (2), the Boolean algebras ∇(S(0, 1)) and ∇(AD(0, 1)) coincide. Since ė = 0 for
all e ∈ ∇(S(0, 1)), it follows that ∇(S(0, 1)) ≡ ∇(AD(n)(0, 1)) for all n ∈ N ∪ {∞}. By
Theorem 3.1, we have that trdegS(0, 1) = trdegAD(n)(0, 1) = c for all n ∈ N∪{∞}. Therefore
by [8, Theorem 4.6], we obtain that the algebras S(0, 1) and AD(n)(0, 1) are isomorphic. The
proof is completed. ⊲

We have mentioned that by Lusin’s theorem, it follows that S(0, 1) = C[0, 1]
ρ

(see (5)).
On the other hand, by Whitney’s theorem [20, Theorem 1] (see also [17, Theorem 3.1.16]),
any approximately differentiable function on [0; 1] is continuously differentiable outside of a
closed subset of arbitrarily small measure, it follows that

AD(0, 1) = C(1)[0, 1]
ρ
.

At the same time for n > 2 we have the following result.

Proposition 3.2. Let n > 2. Then

C(n)[0, 1]
ρ
$ AD(n)(0, 1),

where C(n)[0, 1] is the algebra of all n-times continuously differentiable complex-valued

functions on [0, 1].

⊳ By [21] for any ε ∈ (0, 1) there are a closed subset A ⊂ [0, 1] and a monotone non
negative function f ∈ C(1)[0, 1] such that

(a) m(A) = 1− ε;
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(b) ḟ |A ≡ 0;
(c) {t ∈ A : f(t) = g(t)} is a finite set for any g ∈ C(2)[0, 1].

Consider the function h = χAf. Then ḣ = 0, hence h ∈ AD(n)[0, 1] for all n > 1. From
properties (a) and (c) for any g ∈ C(n)[0, 1] (n > 2) we have that

ρ(h, g) = µ ({t ∈ [0, 1] : h(t) 6= g(t)}) > µ ({t ∈ A : f(t) 6= g(t)}) = 1− ε.

Thus h /∈ C(n)[0, 1]
ρ

for all n > 2. The proof is completed. ⊲
Similar to the proof of Theorem 3.1 we obtain the following result.

Theorem 3.2. The algebra C(n)[0, 1]
ρ

is a regular, integrally closed, ρ-closed and c-
homogeneous subalgebra in S(0, 1) for all n ∈ N ∪ {∞}.

4. The Space of All Derivations and Group of Band Preserving

Automorphisms of Algebras of Measurable Functions

4.1. The dimension of the space of all derivations on algebras of measurable

functions. Recall that a linear mapping D : A → A is called a derivation if it satisfies the
identity D(xy) = D(x)y + xD(y) for all x, y ∈ A .

Let ∂AD : AD(0, 1) → S(0, 1) be the approximate differentation operator. It is clear
that ∂AD maps AD∞(0, 1) into itself. Let α : S(0, 1) → AD∞(0, 1) be an isomorphism (see
Corollary 3.1). Setting

∂
(α)
AD(x) = α−1 (∂AD(α(x)) , x ∈ S(0, 1),

we obtain a non zero derivation on S(0, 1).
Recall that the existence of non zero derivations on S(0, 1) were obtained independently

by A. F. Ber, F. A. Sukochev, V. I. Chilin [12] and A. G. Kusraev [7]. In [19, Proposition 6]
it was shown that the dimension of the linear space of all derivations on the algebra S(0, 1)
is uncountable.

For the proof of the next result we need the following Erdösh–Kaplansky Theorem [22,
p. 258]. Let V be an infinite dimensional linear space over a field F and let V ∗ be its dual
space. Then

dimV ∗ = |F|dimV . (8)

Proposition 3.1 allows us to determine the dimension of all derivations on S(0, 1). Namely, we
shall prove the following result.

Теорема 4.1. Let DerS(0, 1) be the linear space of all derivations of S(0, 1). Then

dimDerS(0, 1) = 2c.

⊳ Let M be a maximal locally algebraically independent subset in S(0, 1). Denote by
F(M , S(0, 1)) the set of all mappings f : M → S(0, 1) such that

s(f(x)) 6 s(x) (9)

for all x ∈ M . Then the mapping

δ ∈ DerS(0, 1) 7→ δ|M ∈ F(M , S(0, 1)) (10)

defines a linear isomorphism between DerS(0; 1) and F(M , S(0, 1)) (see [19, Theorem 1]).
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By Proposition 3.1 the algebra S(0, 1) is c-homogeneous and therefore we can choose
a faithful maximal locally algebraically independent subset M of S(0, 1) of the continuum
cardinality. In this case, since s(x) = 1 for all x ∈ M , it follows that the linear space
F(M , S(0, 1)) coincide with the linear space S(0, 1)M of all mappings form M into S(0, 1).
Further, using (6) we obtain that

dimDerS(0, 1) = dimS(0, 1)M 6 |S(0, 1)|trdeg S(0,1) = cc = (2ℵ0)c = 2ℵ0·c = 2c.

It is clear that the mapping

f ∈ (spanM )∗ 7−→ f̃ ∈ S(0, 1)M

defined as follows
f̃(x) = f(x)1, x ∈ M

is injective. Therefore dimS(0, 1)M > dim (spanM )∗ . Finally,

dimDerS(0, 1) = dimS(0, 1)M > dim (spanM )∗
(8)
= |C||M | = cc = 2c.

The proof is completed. ⊲

Example 1. It is well-known that for an arbitrary algebra A the linear space Der(A )
equipped with the following Lie bracket

[D1,D2] = D1D2 −D2D1, D1,D2 ∈ Der(A )

becomes a Lie algebra.
We shall show that the Lie algebra DerS(0, 1) contains a subalgebra isomorphic to the

infinite dimensional Witt algebra.
Let M be a faithful maximal locally algebraically independent subset of S(0, 1) and let

ξ ∈ M be a fixed element. For any n ∈ Z set

δn(ζ) =

{

ξn+1, if ζ = ξ,
0, if ζ 6= ξ.

Since s(δn(ζ)) 6 s(ζ) for all ζ ∈ M , it follows that δn ∈ F(M , S(0, 1)) for all n ∈ Z (see (9)).
By (10), for each n ∈ Z there is a unique derivation dn ∈ DerS(0, 1) such that dn|M = δn.
Since dn is a derivation, using Leibniz rule, we obtain that dn(ξ

k) = kξn+k for all n, k ∈ Z.
Taking into account the latter observation, we have that

[dn, dm] (ξ) =dn (dm(ξ))− dm (dn(ξ)) = dn
(

ξm+1
)

− dm
(

ξn+1
)

=(m+ 1)ξn+m+1 − (n+ 1)ξn+m+1

=(m− n)ξn+m+1 = (m− n)dn+m(ξ)

and

[dn, dm] (ζ) = 0, ζ 6= ξ

for all n,m ∈ Z. Thus [dn, dm]|M = (m− n)dn+m|M , and hence according to (10),

[dn, dm] = (m− n)dn+m (11)

for all n,m ∈ Z. The relation (11) shows that the subspace W = span{dn : n ∈ Z} is a Lie
subalgebra of DerS(0, 1) which is isomorphic to the infinite dimensional Witt algebra.

It should be noted that Witt algebras compose one of the four classes of Cartan type Lie
algebras originally introduced in 1909 by E. Cartan [23] when he studied infinite dimensional
simple Lie algebras over complex numbers.
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Based on latter note we may formulate the following problem.
Problem 4.1: Any finite or countable dimensional complex simple Lie algebra can be

embedded into the Lie algebra DerS(0, 1).

Remark 4.1. Let us consider on S(0, 1) a metric ρµ defined as [24]

ρµ(x, y) = inf
{

ε > 0 : µ ({t ∈ [0, 1] : |x(t)− y(t)| > ε}) 6 ε
}

.

Note that ρµ-convergence in S(0, 1) coincide with the convergence in measure. Since the
subspace of all simple functions F(∇) is ρµ-dense in S(0, 1) and any derivation of S(0, 1)
vanishes on F(∇), it follows that any ρµ-continuous derivation on S(0, 1) is identically zero.
So, any non zero derivation of S(0, 1) is ρµ-discontinuous.

Note that this phenomenon is a purely commutative effect. In the case of type II1 von
Neumann algebra M all derivations of the regular algebra S(M) are inner, in particular, is
continuous in the measure topology [25, 26].

4.2. The order of the group of all band preserving automorphisms of algebras

of measurable functions. Recall that two elements x, y ∈ A are said to be orthogonal
(notation x ⊥ y), if s(x)s(y) = 0. A linear mapping Φ : A → A is said to be band preserving,
if [7, 27]

x ⊥ y =⇒ Φ(x) ⊥ y.

Since x ⊥ 1 − s(x), we see that Φ is band preserving if and only if s (Φ(x)) 6 s(x) for all
x ∈ A .

Let Φ : A → A be an automorphism. Then Φ is band preserving if and only if Φ acts
identically on Fc(∇) [8, Proposition 3.3].

Assume that A is homogeneous and M is a faithful maximal locally algebraically
independent subset of A . Denote by G (M ,A ) the set of all mappings g : M → A such that
g(M ) = {g(x) : x ∈ M } is also a faithful maximal locally algebraically independent subset
of A .

A permutation of M is a bijection from M onto M . The group of all permutations of M

is denoted by Sym(M ). Let Fc(∇) = span∇
ρ
. Then Fc(∇) is a regular subalgebra in A

(see [12]). Let Fc(∇)• be the group of all invertible elements from Fc(∇).

Denote by Aut∇(A ) the group of all band preserving automorphisms of A . We may view
to the group Aut∇(A ) as a Galois group of the ring extension A over Fc(∇). There is an
injective mapping

g ∈ G(M ,A ) → Φg ∈ Aut∇(A ),

in particular, the group Aut∇(A ) contains a subgroup isomorphic to the group Sym(M ) ⋉
(Fc(∇)•)|M | (see [8, Theorem 4.2]).

Similarly, as in the proof of Theorem 4.1 we have that

|Aut∇ S(0, 1)| 6
∣

∣

∣
S(0, 1)S(0,1)

∣

∣

∣
= cc = 2c.

On other hand, taking into that Aut∇ S(0, 1) contains a subgroup isomorphic to (Fc(∇)•)|M | ,
we obtain that

|Aut∇ S(0, 1)| > |Fc(∇)•||M |
> c|M | = cc = 2c.

So, we have proved the following result.
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Theorem 4.2. The order of the group of all band-preserving automorphisms of the algebra

of all complex-valued measurable functions on the unit interval is equal 2c, i. e.

|Aut∇ S(0, 1)| = 2c.

Remark 4.2. We note that A. E. Gutman, A. G. Kusraev, S. S. Kutateladze in [14,
Comment 5.3.7], concerning the notion of algebraic independence in regular rings wrote: This

notion, presenting the external interpretation of the internal notion of algebraic independence

(or transcendence), seems to turn out useful in studying the descents of fields or general

regular rings. As we can see, our results confirm the above prediction.
Acknowledgments. We are indebted to the Referee for very valuable suggestions and remarks,

which helped us to significantly improve the exposition.
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Аннотация. Настоящая работа посвящена изучению некоторых классов однородных регулярных
подалгебр алгебры всех комплекснозначных измеримых функций на единичном интервале. Известно,
что степень трансцендентности унитальной коммутативной регулярной алгебры является одним из важ-
ных инвариантов таких алгебр наряду с булевой алгеброй ее идемпотентов. Также известно, что если
(Ω,Σ, µ) — однородное пространство с мерой Магарам, то две однородные унитальные регулярные по-
далгебры в S(Ω) изоморфны тогда и только тогда, когда их булевы алгебры идемпотентов изоморфны,
и степени трансцендентности этих алгебр совпадают. Пусть S(0, 1) — алгебра всех (классов эквивалент-
ности) измеримых комплекснозначных функций, и пусть AD(n)(0, 1) (n ∈ N ∪ {∞}) — алгебра всех
(классов эквивалентности) почти всюду n-раз асимптотически дифференцируемых функции на [0, 1].
В работе доказано, что AD(n)(0, 1) является регулярной, цело-замкнутой, ρ-замкнутой, c-однородной
подалгеброй в S(0, 1) для всех n ∈ N∪ {∞}, где c — континуум. Далее мы покажем, что алгебры S(0, 1)
и AD(n)(0, 1) изоморфны для всех n ∈ N ∪ {∞}. В качестве приложения этих результатов установлено,
что размерность линейного пространства всех дифференцирований на S(0, 1) и порядок группы всех
сохраняющих полосу автоморфизмов алгебры S(0, 1) совпадают и равны 2c. Мы также покажем, что
алгебра Ли DerS(0, 1), всех дифференцирований алгебры S(0, 1), содержит подалгебру, изоморфную
бесконечномерной алгебре Витта.

Ключевые слова: регулярная алгебра, алгебра измеримых функций, изоморфизм, сохраняющие
полосы изоморфизм.
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