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1. Introduction

Bochner S. defined explicitly almost automorphic functions in the papers [1, 2|, where also
some of their basic properties are given. In [3] he studied linear difference differential equations
in the framework of such functions. It is well known that the concept of almost automorphy is
strictly more general than the almost periodicity of H. Bohr [4], however the Stepanoff almost
periodicity [5] and the Levitan almost periodicity [6] don’t enter into the Bochner concept.
Asymptotic almost periodicity of functions as a perturbation of almost periodic functions by
functions vanishing at infinity is due to M. Fréchet in [7]. Asymptotic almost automorphy of
classical functions is considered in [8], see also [9]. The almost periodicity and the asymptotic
almost periodicity of Sobolev—Schwartz distributions, [10] and [11], are respectively considered
by L. Schwartz in [11] and I. Cioranescu in [12], while almost automorphy and asymptotic
almost automorphy in the setting of these distributions are respectively the subject of the
recent works [9] and [13].

In view of the result [14] on the impossibility of the multiplication of distributions, algebras
of generalized functions containing spaces of Sobolev—Schwartz type distributions have been
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studied, see [15-17]. The concepts of almost periodicity and asymptotic almost periodicity
as well as almost automorphy in the context of such algebras of generalized functions are
introduced, studied and applied in the papers [18-22|. So, the paper first introduces and
studies a class of asymptotically almost automorphic generalized functions, denoted by 4,4, -
In the sense of multiplication, not only ¥,,, is stable under multiplication and it contains the
space of asymptotically almost automorphic distributions of [9], but moreover some nonlinear
operations are performed within the algebra ¥,,,. As a by pass result, we give a Seeley type
result on extension of functions in the context of the introduced generalized functions, this
is needed in the proof of a fundamental result on the uniqueness of decomposition of an
asymptotically almost automorphic generalized function. The papers [20] and [21] can be
considered as consequences of this work. The paper aims also, as in [7], to lift a Frechet
existence result of asymptotically almost automorphic solutions of differential equations to
the level of neutral difference differential systems in the framework of ¥,,,.

It is worth noting that the meaning of generalized functions is utilized differently by
authors as distributions or ultradistributions, even as hyperfunctions, but in this work by
generalized functions we mean in the sense of the works [15-17].

The paper is organized as follows: section two recalls definitions and some properties
of asymptotically almost automorphic functions and asymptotically almost automorphic
distributions as in [9]. Section three introduces asymptotically almost automorphic generalized
functions and gives some of their important properties. The study of a Seeley type result on
extensions of generalized functions is given in section four. In section six nonlinear operations
on asymptotically almost automorphic generalized function are studied. The last section is
dedicated to linear neutral difference differential systems in the framework of asymptotically
almost automorphic generalized functions.

2. Asymptotic Almost Automorphy of Functions and Distributions

Let %, denotes the space of bounded and continuous complex-valued functions defined
on R, endowed with the norm || - ||LOO(R) of uniform convergence on R, it is well-known that
(. || - HLOO(R)) is a Banach algebra.

A complex-valued function g defined and continuous on R is called almost automorphic if
for any sequence (sp,)men C R, one can extract a subsequence (s, ) such that

g(z) == lim g(z+sp,) (VzeR),
k—4-o00
and
lim g(z —sm,)=g(x) (VzeR).

k—+00
The space of almost automorphic functions on R is denoted by %p,.

The space € is the set of all bounded and continuous complex-valued functions defined
on R and vanishing at +oo.

DEFINITION 1. We say that a function f € %}, is asymptotically almost automorphic,
if there exist g € 6,4 and h € €} o such that f = g+ h on J := [0,+00[. The space of
asymptotically almost automorphic functions is denoted by %puq-

For a study of asymptotically almost automorphic functions and asymptotically almost
automorphic distributions see [9] and [13] and the references list therein.

Proposition 1. The decomposition of an asymptotically almost automorphic function is
unique on J.
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Notation 1. If f € €44 and f = g+ h on J, where g € € and h € €4 . Due to the
uniqueness of the decomposition of f, the function g is said the principal term of f and the
function h the corrective term of f, we denote them respectively by f,, and f.-. The notation
f = (faa + fcor) € Cgaaa means that faa € Cgacu fcor € Cg-‘,-,O and f = faa + fcor on J.

Let &(I) be the algebra of smooth functions on I = R or J, and define the space
D(l) i={p €&MW) : Vj €Ly, oV € XM}, pe L, +o0],

that we endow with the topology defined by the family of semi-norms
(@)
‘w{k% Z Htp HLP(H)’ k€Zy.
Jj<k

So, Z1»(I) is a Fréchet subalgebra of &(I). Denote Z(I) := P ().
REMARK 1. We have lim,_,q ap(j)(x) exists for every j € Z, when ¢ € Z1»(J).
>

The space of smooth almost automorphic functions %,, and smooth asymptotically almost
automorphic functions %, are defined respectively by

PBoo ={pe&ER):Vjely, = Gaa ) -

Basa = {p € ER): V) €Ly, o) € Graa}.

We endow B, and HBaq with the topology induced by & := P (R).

Proposition 2. (1) The space Buqq is a Fréchet subalgebra of % stable by translation.
(2) t@aaa X t@aa C %aaa-
(3) t@aaa * Ll - %aaa-

The space of LP-distributions, p €]1,+00], denoted by Z;,(R), is the topological dual
of Z14(R), where 1/p + 1/q = 1. Let # be the closure in Z of the space 2 C &(R) of
functions with compact support. The topological dual of % is denoted by 2. (R). The space
of bounded distributions 2]« (R) is denoted by %’. The following definition follows from the
characterizations of almost automorphic distributions, see [9].

DEFINITION 2 (Proposition). The space of almost automorphic distributions, denoted
by 4., is the space of T' € %’ satisfying one of the following equivalent statements

()T @€ b, Vo €.

(2) 3k € Z4 and gj € €uq, 0 < j < k, such that T' = Z?:o g§j).

The space of bounded distributions vanishing at infinity, denoted by %’ﬁr’o, is the space of
Q € #' satistying

lim (7,Q,p) = hm <Q,7ng0> =0 (Vepe2),

w—+—+00 w—+

where 7,0(-) == ¢(- + w), w € R.

Theorem 1. The space of asymptotically almost automorphic distributions, denoted
by %’ .., is the space of T € 9B’ satisfying one of the following equivalent statements

(1) 3P € By, 3Q € B such that T = P +Q on J.

(2) Txp € Cuaa, Vo € D.
E3; 3k € Zy and fj € Caga, 0 < j <k, such that T =35 f19),

4) 3 (0m)menN C Paaa such that lim,, o 0,y =T in A
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Notation 2. If T € #.,, and T = P + Q on J, since this decomposition is unique

by [9, Proposition 12], the distribution P is called the principal term of T, the distribution @
is called the corrective term of T', we denote them respectively T, and T,,,. This is summarized
by the notation T' = (Tyq + Teor) € B,

aaa*

3. Asymptotically Almost Automorphic Generalized Functions

We introduce and study an algebra of asymptotically almost automorphic generalized
functions.
Let I :=]0,1], (u:)e € (Z»(1))!, p € [1,4+00], m € Z and k € Z,, then the notation

luclppr =O0(E™), e 20 <= (Fc>0)(Feg € 1) (Ve <ep) |ue|lppr < ce™.
The space of moderate elements is denoted and defined by

Maga = {(ue)e € (Paaa)" : Vk € Ly, Am € Ly, |uc|poor = O(e™), & = 0},
and the space of null elements by

Naga = {(U): € (Baga)' : Yk € Ly, Vm € Ly, uclioor = OE™), e — 0}.

Some properties of ., and A4, are given in the following results.

Proposition 3. (1) We have the null characterization of Ayqaq, 1. €.
Noaa = {(ue)8 € Maaqa : Ym € Ly, |ucloor = O0(E™), € = O}.

(2) The space Myq, is an algebra stable under translation and derivation.
(3) The space Nqqq is an ideal of My, .

< (1) The proof is based on the following Landau—Kolmogorov inequality

1,,

1P ey < 271 iy 1 ey

where 0 < p <n € Z; and f is of class €"(R). Let (us): € Myaa, 1. .

VkeZi)(3meZy)(Fe>0)(Fer €I)(Ve <e1) |uelpoor < ce ™, (12)
and it satisfies the estimate of order zero, i. e.

(Vmo € Zy) (Fea >0)(Fea € 1) (Ve <€) |ue|o,cor < c26™2. (13)
The Landau—Kolmogorov inequality for p = j, n = 27, (12) and (13) give Vk € Z,
el < 3 2] [k 2
<k

1
<2 |u€|OooR ZHU HLoo %6226
1<2k

Taking mo € Z, such that mg = 2( — 2 + %2) € Z,, then we obtain

1
VkeZi)(Vmo€Zy)(Fe= 27rc%022 > 0) (Jeg = inf(e1,e2) € I) (Ve<ep) |te|poor < c€™.

Which gives (ug)e € Aaaa-



42 Bouzar, Ch. and Slimani, M.

(2) The stability under translation and derivation of the space .#,, is obvious. Let (u.)e,
(Ve)e € Maqa, 1. €. they satisfy (12) and for j € Z,

H(ueve)(j)HLoo(R) S Z il — i) Hug)HLOO(R)va )HLOO(R)
i<J

mi mo

J! ; e
< el 00,R |Vl 00,R Z m < 2cpege™™e ™2,

i<y
consequently,

(Vk€Zy)(@m = (mi1+m2) € Zy) |ucvelpoor =0("™), €= 0.

Which shows that (u.v:)e € Hgaa-
(3) Let (ve)e € Maaa and (us)e € Ngaa, 1. €. (ve)e satisfies (12) and (u. ). satisfies

’

(VkeZ)(Ym €Zy)(3d >0) 3y €I) (Ve <e))  |uelpoor < ™. (14)

Since the family of the norms | - [ o r is compatible with the algebraic structure of 4, i. e.
Vk € Zy, dci > 0 such that

Ve koo < Chltic koo R |Ve koo r < crede ™e™.

Take m/ € Z, such that mg = (—m +m') € Z,, so we obtain

(Vk €Zy)(Vmg € Zy) (3C=cped > 0) (3eg=inf (e1,¢]) € 1) (Ve<ep) ‘uavg‘kooRgCamo,

which implies (uzv:)e € Agaa- >
DEFINITION 3. The algebra of asymptotically almost automorphic generalized functions
is denoted and defined as the quotient algebra

‘% aaa

Gaaa = v
aaa

EXAMPLE 1. We have ¥,,, C %44, Where ¥, is the algebra of asymptotically almost
periodic generalized functions of [20]. Let p € . such that

/p(w)dle and /wkp(ac)dm:O (Vk e N).
R R

Set pe() == £ p(2), € > 0.
Define the following maps

laaa * %)aaa — Yaaa

T +— (T*pe), + Naa
Oaaa : PBaga — Goaa

[ () + Saaa
Yaaa : %aaa — %(Iwa

o= f
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Proposition 4. The following diagram of linear embeddings

Yaaaq /
%aaa — '%,aaa
Oaaa \4 {1 taaa
gchta

Is commutative.

< For f € Baaa, we have Y400 (f) € PBasa C Gaaa- We conclude from (|9, Example 3-(1)])
that Yaaa(f) € PBlyy- Let T € AB,., by the characterization of an asymptotically almost

aaa* aaa’

automorphic distribution 3 (f;)i<m C Gaaa such that T'= 3", fi(i). Ifjez,,

1 w
(T % po) ()] < Zelﬂ /‘fz z —ey)p ) (y)| dy < Zﬁ||fi||L°°(R)/‘P(H])(y)‘d?/a
R

<m i<m

consequently, there exists ¢, j > 0 such that

. Cm,j
H(T * pE)(])HLOO(R) X em—Jr]j,

hence,
VEkeZy)3BmieZy) |Txpelpor=0(E"™), =0,

which gives that (T % p:): € Myaq. The linearity of t44q results from the fact that the
convolution is linear. If (T * p:)e € Nqa, then

(Vm' €Zy) (3 >0)(Fel € I) (Ve <el) T # pell ooy < ™. (15)
Due to regularization we have

(T,0) = lim [ (T p)(@)pla)de, ¢ € Dpa(R).

From (15), it holds Vm' € Z,, 3¢ >0, 3¢} € I, Ve < &,

[ parsto) de] < ] sy

consequently, when ¢ — 0 we obtain (T,v) = 0, V¢ € Z;1(R), therefore 144, is injective.
Finally,

laaa (T(j)) = (T(]) * pe)a + t/;{wa = (T * Pe)( ) + %aa = (Laaa(T))(j) (V] € Z+)7

i. e. the embedding t44, commutes with derivatives.
Let f € Baaa, we have to show that (f*p: — f)e € Aaaa- By Taylor’s formula, for 6 €]0, 1]
and m € N, we set for j € Z,, that (fU) x p. — f9))(z) equals

m— 1

£ @) dy+ [ [ gey)ply)dy,

I=1 R

and then

59 pe = £ ey < g s [ 160" 09— 020 o) .
R

fomtd) HLOO(R) HympHLl(R)

\m!H
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Hence, (Vk € Z1) (Vm € N)

‘f*ﬂe_f‘kooR\ |f|m+kooRHy 'OHLl

which means that (f * p: — f)e € Saa- >

REMARK 2. The application 044, is not only a linear embedding but it is also an algebraic
embedding.

Recall the algebra of almost automorphic generalized functions, see [22]|, denoted and
defined by

where
Moy = {(ue)g € (Boa) :VkeZy, IMm e Z,, [Uuelpoor = O(e™™), € = 0}.

Naa = {(Ue)e € (Baa) : VE €Ly, Ym € Ly, |uclpoor = O(E™), € — 0}.

The algebra of LP-generalized functions on I, 1 < p < +00, see [23], is defined as the quotient
algebra

Mrp (1)
“rp(I) =
e (I) D)’
where
Mip(1 —{ ue)e € (P (D) :VEk € Zy, 3m >0, |Ue|kp = O(e™™), € — 0}.
N (D) := { Ue)e € (2 (D) : V€ Zy,¥Ym >0, [te|pp1 = O(€™), € = O}.

Notation 3. Denote 91 (I) := 95(l), 9z = 9»(R) and 91 := 91 (R).
For w € R, the translate 7,,u of u = [(uc):] € Y5 is defined by

Tl 1= [(Twue)e].

For j € Z, the derivation u " of @ is defined by

~ () ()
i = [ ()]
Let v = [(ve)e] € 9, the product u x v is defined by

UXV:i= [(uevg)a].

Let v = [(vs)e] € 911, the convolution u * v is defined by

UxV = [(u6 * ve)g].

The following results lift the results of Proposition 2 to ¥,4,.
Proposition 5. (1) 9,4, Is a subalgebra of 95 stable under translation and derivation.
(2) gaaa X gaa - gaaa-
(3) Ysaa * Y11 C Yana-
< (1) From Proposition 3(2), we deduce that %, is an algebra stable under translation
and derivation. Let (ug)e € Myaq, satisfies (12) and as Buaq C B, hence (u.). € My If
(Ue)e € Naaa, in the same way we prove that (uc). € A%.
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(2) Let u = [(ue)e] € Gaaa and U = [(ve)e] € Gag- As (ue)e € Maga and (ve)e € Myq, SO
(ue)e and (v:)e satisfy the estimate (12). In view of Proposition 2 (2) it follows that for all
e €l, uve € PBaaa, and for every j € Z,,

mi _.—msg

) ey < 2 e el < Dereze ™=,
therefore, (Vk € Zi) (3m = (m1 + ma) € Zy) |ucvelpor = O(E™), € = 0, i. e,
(UgVs)e € Myqq. The product u x v is independent on the representatives. Indeed, suppose
that (ul)e € Myaa and (VL) € Maq are others representatives of u and v respectively, for

j€Z+7

H (v — o)) HLOO(R) _ H (ueve — ulve + ulve — u;vé)(a)HLoo(R)
S H ((we = “'e)vf)(j)HLoom) * H (v =) HLOO(R)
<2 (‘Ue - Ule‘j,oo,R |v5‘j,oo,]R + ‘ugjvoo,R [ve = vé‘j’m’R>’

since (us — ul)e € Naaa, (Ve — VL) € Naa, then

VkeZy)(VmeZy) |u€v€ - O(e™),

’ o .
u€v€|k,oo,R =

as £ — 0, which implies that (u.ve — ulvl)e € Ngaa-
(3) Let w = [(ue)e] € Yaga and ¥ = [(ve)e] € Yy, 50 (Ug)e € Myqq and (ve)e € A1, that
is (ue)e satisfies the estimate 12, and (v.). satisfies

(VkeZi)(Fmy >0) (Fe>0)(Feg el)(Ve <eg) |velpgar <ce” ™.

Proposition 2 (3) gives for all € € I, u. * v: € Byqq. Due to Young inequality we obtain

e 0) ooy < N ooy N -

For every k € Z,

Jue ”6|k,oo,R S Z Hugj)HLw(R) |’U‘3HL1(R) < ‘u‘f‘k,oo,R |”6‘0,1,R7
<k

consequently,

(Vk€Zy)(AmEZy) |ue v, =0(E™), e =0,

|k,oo7]R

SO (Ug * V:)e € Maqq. The convolution u * v does not depend on the representatives. Indeed,
suppose that (u.)e € Myaq and (VL) € M1 are others representatives of u and v respectively,
for every k € Z,

|ue * ve — ul *vuk,oo,]R = Jue % ve — ul x Vo + ul *ve —u;*vgkm’R
< |u€ - u;‘k,oo,R |U€‘0,1,R + ‘qu,oo,R |”E - ”2‘0,1,11@’
as (ue —ul)e € Naaa, (Ve — VL) € A1, then
(VkEZL)(VmELy) |ue*ve —ul vg{ka =0(™),

as € — 0, which means that (uc * ve — ul * V). € Ngaq. >
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4. A Generalized Seeley Theorem

We give a result on the extension operators in the context of generalized functions. It is
needed in the proof of the decomposition of an asymptotically almost automorphic generalized
function. Let’s first recall a technical Lemma, see [24].

Lemma 1. There are two sequences of real numbers (a;)1ez, and (by)cz, such that
(1) by <0,V € Zy.
(2) S5 ||y |™ < +o00, Y € Zsy.
B) i S abr=1,VneZ;.
(4) by — —o0, | = +00.
Define the space

Bio) ={peBW):VjeLy, lim ¢V (x)=0}.

The algebra of bounded generalized functions vanishing at infinity on I is defined by

Gy o(l) := j/ﬁsg)) ;

Myo(1) = {(ue)e € (Byo@) : Yk €Zy, Im € Zy, Juc|hoog = O(™™), € — 0}.
Noo(D) = {(ue)e € (B1o(D) : Yk € Zy, ¥Ym € Z, |uclpoon = O(E™), € — 0}

Theorem 2. The linear extension operator E : 95(J) — 95(R), & = [(uc).] — Eu =
[(Eue)e], where

ue (), if x>0,
FEug(x) := { to0

> apue(byx), if x <0,

1=0

is well defined and we have Eﬂw = 4. In particular, Vi € 9, o(J), B € 9y o(R).

< Let u = [(ue)e] € 9%(J), and (ue). € A 5(J) be a representative of u. So Ve € I,
Fu. € #(R) and Eu,y = u.. Indeed, if z < 0, then bz > 0, VI € Z, in view of Lemma 1 (1).
Moreover according to Lemma 1(2) and as u. € AB(J), Ve € I, hence Vn € Z,, Ve € I,
Vo <0,

|(Bue) ™ (@)| < |Jul™| o 9 Z lag| || < +o0, (16)

consequently, Vn € Z, the series
(Eug) (” Zalbl blaz eel,
absolutely converge. Furthermore due to Lemma 1 (3),

i}g}] (Eu€ Z a;b}' hm u blac = u Z a;b] = u
<
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soVeel, Eu. € &(R). AsVe €I, u. € A(J) and by (16), it follows that Vn € Z, Ve € I,
(Eu.)™ € L=(R). In order to show that (Eu.). € .#z(R), we prove the following estimate

(Veel)(Vk€Zy)(3Ck >0)  [Buelkoor < Ckltte|k,00,3- (17)
Indeed, it is clear that
H(Eue)(n)HLoo(J) - Hugn)HLOO(J)’

and the estimate (16), gives

+00
1B | e gy < N gy Dl 10"
=0

therefore

(B ™| ooy < Crnlltl? ] oy

where C,, = max (1, "5 |ai||bi|™). So

(Vk€Zy) (3 Cri=Y Cu< +oo) (Ve € 1) (ue € B())

n<k

{Eu€ < Ck‘uE (18)

{k,ooJR

this implies (Fu,). € .#%(R). The definition of E4 is independent on representatives. Indeed,
if (ue)e and (ve) are representatives of u, hence by (18),

(Veel)(Vke€Zy)(3Cr >0) |Bue — Eve‘ka < Cilue — vs\m”ﬂ.
As (ue — v:)e € A3(J) then
(Vk€Zy)(Ym>0) |Puc— Ev€|kooR =0(E"), e =0,

which shows that (Eu. — Eve). € Az(R).
We have Eujp = u in 9z(J). Indeed, as Eu = [(Bu.):] € 93(R) and @ = [(u.):] € 9z(J),
therefore

E@\J — U= [(Eueu])s] — U= [(ue)e

|
I3
Il
=g
|
<
Il
(@)
E.
N
S
o

If @ = [(ue)e] € 44 0(J) C 95(J), then Ei = [(Fu.).] € 9»(R). So Ve € I, Eu. € B(R).
The fact that Ve € I, Euc =u-. onJ, and Ve € I, u. € %A, o(J) implies limy_, o Eu.(z) =0,
i.e.Veel, Eu. € €. By |9, Proposition 5 (5)], we obtain that

(Veel) Fu.e€ % oNBR)=%B:oR),

it follows that Eq € 9, o(R). >
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5. The Decomposition

In this section we show that an asymptotically almost automorphic generalized function
is uniquely decomposed as in the classical case.

Theorem 3. Let u € ¥,,,(R) then there exist v € ¥,,(R) and w € ¥4 o(R) such that
u =7+ w on J, and the decomposition is unique on J.

< Let u = [(ue)e] € Yaga, so Ve € I,Vj € Zy, uéj) € Caaa- Then there exist v. j € Cuq,
We j € €40, such that Vj € N, uéj) = (Vej + We j) € Caaq o0 J, and for j = 0, u. = v + w:
on J. By [9, Proposition 8], it holds that Vj € N, v ; = (v:)) on R and w, ; = (w.)¥) on J,
which gives v. € By, and w, € B, o(J). Let’s show that (ve). € Mae. As (ue)e € Myaa,
therefore

VkeZi)(3meZy)(Fe>0)(Feg€I)(Ve <ep) |uelpoor < ce ™. (19)

Due to |9, Proposition 3 (5)], we obtain

(75 €Z1) [0 ooy < 48] 1 gy (20)
it follows that
VkeZy)(3meZy)(Fe>0)(FegeI)(Ve <eg) |velpoor <ce ™, (21)

this means that (ve)e € Muq. If (ue)s € Ngaa then
VkeZi)(VmeZy)(Fe>0)(Feg€I) (Ve <ep) |uelpoor < €™, (22)

and from (20) it holds (v.). € Agq. Consequently, v = [(ve)e] € Daa- On the other hand, we
have

(Vi eZy) ng)HLw(J) S Hug)HLW(J) + HUé])HL‘X’(J)' (23)
The estimates (19), (21) and (23) give
VkeZi)(3meZy)(3e>0)(Fegel)(Ve <ep) |welpooy < 2c™™,

hence (we). € A4 o(J). If (us)e € Naaa, then (we): € A4 o(J) follows from (22) and (23).
Thus w = [(w:)e] € 94 0(J). By Theorem 2 extending w € ¢ o(J) to Ew € 4. o(R) with
E@ = on J. Finally, w = v + w on J.

If @ € 9,44 has two decompositions, i.e.

u=vi+w; on J, =12,
where v; € 9,, and w; € 91 o := 9, o(R). Let (vei)e € Myq and (we ;) € A o be respectively
representatives of v; and w;, i = 1,2. So (ve;1 — Ve 2)e + (Wep — we2): € A(]), 1. e.

(Vk € Zy)(Ym >0)Fe>0)(3ep € I) (Ve < )

|U€,1 — Vg2 + We 1 — w572‘k,oo,J <ee™. (24)

Due to [9, Proposition 9], as Ve € I, vo; € PBaq, @ = 1,2, for any real sequence (s, )men, such
that s, — +o0o there exist (Sml(g))l a subsequence of (sy,)men and ge;, ¢ = 1,2, such that
VeeR,VjeZ,,

Gy - () ()

_ : _ @
9:; (x):= lim v (x + sml(g)) and l_1>1_IFnOO 9e i (ﬂc — Sml(a)) =, ().
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Furthermore, as Ve € I, we; € By, 1= 1,2,

lim wY)(z+sm,.,) =0 (VzeR, VjezZy)

l—=4oc0 7

By using (24) we have

(Vm > 0)(3c>0)Feg € I) (Ve < &9) (VT = —m)s

1)6{1) (x + sz(a)) U( )(x + Sy, ) + ws]f (x + sz(a)) - wg% (m + sz(s))‘ <™,

)

so when | — 400 we obtain

(¥m > 0) (Fe > 0) (Feg € I) (Ve < £9) (Vo = —spmy,.))

99 @) = g (@) < e,

)

by taking the translate —Smye and let [ — 400 we get

(Ym > 0)(3e>0) (3eg € I) (Ve < ) (Y = 0)

By [9, Proposition 3 (5)], it follows

(Vke€Zy)(Ym>0)(3c>0)(eg €I) (Ve <ep) |veq— <™,  (25)

Ua?‘k,oo,R
which shows that (ve1 —vz2)c € A2(R), so 1 = V2 in 9%(R). From (24) and (25) it holds
that (w571 — w572)5 € JVQ(J), l.e.wy =wyonJ. >

Notation 4. Let u € 9,4, and © = v + w on J, where v € ¥,, and w € ¥, o, then v and
w are called respectively the principal term and the corrective term of u and we denote them
respectively g, and Uey. Also u = (aaa + acor) € Yaaa means that ugq € Yya, Ucor € ng,O
and U = Ugg + Ueor o1 J.

6. Nonlinear Operations

The algebra of tempered generalized functions on C denoted by ¥, (C), see [23] for more
details, is the quotient algebra

_ M (C)
where (f). e (¢ ®2) :vjez:, Imer
///T(C)::{ : ' 3(,) ) ST E By }
supgere (1 + |z|)” m|f5j (x)| =0(E™™),e—=0

No(C) = {(fa) ( (R2)) .vjeZ273neZ+,VmeZ+,}.

supgegre (1 + |z]) "‘f ‘— e—0

EXAMPLE 2. Any polynomial function is a tempered generalized function.
Theorem 4. Let & = [(ue):] € Gaaa and F = [(f.).] € 4(C), then

Foi:= [(fe oue)e]

is a well-defined element of 9,,. The pr1nc1pal term and the corrective term of F o 1 are
respectively F(uaa) and F(uaa + Ucor) — F(uaa) where U = Ugg + Ueor o0 J.
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< Let (ue)e € Myaq and (fc)e € A4+(C), by the classical Faa di Bruno formula, we have

v (f. 0 ue)V)(z) £ uew) 2y (6 @))
Me PR Z WH( : ) . (26)

! oo 7!
J l+2a 4+l =, 7=
r=ly 4t

AsVeel, Vj€Zy, u € €oqq and f- € &(R?), it follows by [9, Proposition 3 (4)], that

E(T)(ug) € Guaa, and since G is an algebra, then Ve € I, f. ou. € Buga- As (ue)e € Myaas

then
(Vk€Zy)(Fng €Z4)(3cx >0)(Fep €1) (Ve <eg)  |uelp por < ke ™.

The fact that (f.). € #;(C) gives
(VjeZy)(3N; €Zy)(3C;>0)(3e; e) (Ve <g))
N; .
er Ue HLOO(]R) Cje™ |’1+u5“Li°(R)'

Consequently, by (26) we obtain

. . ; l;
(70 ) oy _ > Cre ™™ 1+ ue |2 ) 1 [
5! ol e nl...1! Pt il
T‘=l1+---+lj

hence there exists ¢ > 0,

[(f 0 )| oo e Nelttno) 2 (cie_m>li
. < — .
> 1

! I!--- 1) 1!
J L2l ttjlj=j, J

— (Nr(1+n0)+ XJ: nili) j

i=1

< XS AR H(%)l <cem,

li+2lo++-+jl;=4, e i=1
r=ly+-+1;
where

j i .

/ c Ci\ "

m—l+21111a§l Nr(l—i—no)—l—Znili , C'= Z A H(ﬁ) .
1 2 Jbj =7, Ai P2 RN 72 Nt !
r=li+-+l, i=1 ll+212l+~~+ﬂljfj, i=1
1<r<j r=lit+-+l;

Finally, with C' = C"3_, ;. j!, it holds

(VkeZy)(FmeZy)(3C >0) (3" = Kggjfgk(si,a;)) (Ve<ée") |feo Uelp or < CeT™,

which means that (f-ouc)e € Myaq. This composition does not depend on the representatives.
Indeed, suppose that (ve): € Myaa and (g:)e € 4 (C) are others representatives of u and F
respectively. Set (ng)e 1= ((Ve)e— (Ue)e) € Naaq and (me)e = ((fe)e—(ge)e) € A7(C). To show
that (feous —ge0v:)e € Naaa, since (feouz — ge 0V )e € Myqq, according to Proposition 3 (1),
it is enough to prove that (f: o us — ge o v.). satisfies (13). Indeed, we have

|fe o ue — gso%‘o«w& |fe 0 ue — faoU€|Ooo]R+|f50v5_g€0v5|000]R

= {fs(ue fe(u€+n€ ‘OOOR_F{mE Ve {OOOR ‘nE{OOOR‘fE Ue {OOOR_{_‘mE Ve ‘OOOR
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It is clear that
(\V/k‘ € Z+) ‘n5|0,oo,R ‘fé(u‘?)‘O,oo,R = O(ek)’ e—0,

and also

(Vi€ Zy) |me(ve O(el), e—0.

‘O oo,R
Therefore,
(VgeZy) {fsous_geovs{o,wR:O(eq)a e —0.
Let % = (Uag + Ticor) € Gaga- As F ol = F(liga) + (F(@) — F(liga)), then

Fou= F(ﬁaa) + (F(aaa + acOT) - F(?jaa)) on J.

In view of [22, Proposition 9|, we obtain F (Ugq) € Yuq. It remains to prove that F (Ugq +Ucor) —
F(uaa) €Y, . Since Y44 and ¥, are contained in ¥z then F(uaa + Ugor) — F(uaa) €Yy It
suffices to show that

(V{;‘ € I) f€ (uaa,s + ucor,a) - fs (uaa75) S %.,_70,

where (fz)e, (Uaae)e and (Ucor,e )e are respective representatives of F ,Ugq and Ugor. The
classical result on composition of asymptotically almost automorphic function with continuous
function shows that the corrective term of fo(uaqe + Ucore) 15 fe(Uaae + Ucore) — fe(Uaa,e)

and the fact that F' (Ugq + Ucor) — F (Uqq) € Yp gives

(VE € I) (fa(uaa,e + ucor,e) - fs(uaa,a)) € A.

By [9, Proposition 5 (5)], we have

(Va € I) fs(uaa,a + ucor,a) - fa(uaa,e) € Cg-i-,O NA = %4-,0- >

7. Linear Neutral Difference Differential Systems

We consider linear neutral difference differential systems for the unknown vector function

u= (ﬂl""’ﬂn)’
p q
ZZ i (7w, ) + Kxu=], (27)
1=0 j

where f = (fi,..., fn) € (Gaaa)", w = (w;)o<j<q C RY andfori <p,j < g, Aij = (A]})
and K = (f(rl)Kr,lgn
L' — generalized functions respectively.

Lemma 2. If & € (Gpaa)™ then Lyt € (Gaaa)™

QI U € (Ypaa)™ then due to results of Proposition 5 we obtain that

1<ri<n
are square matrices of almost automorphic generalized functions and

(Vi<p,j<q) (Vo= (wj)ccg CRY) (Zz’j (Twﬂ)(i)> € (Yaaa)"

and also
KU € (Yyaa)"
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S0
P a
(Z Z Ayj (w,0) DR« u) € (Yaaa)”
i=0 j=
ioe. Lyt € (Gaaa)™. >

DEFINITION 4. A generalized function u € (¥%)" is said a generalized solution of (27)
on J if it satisfies

<ZZZAZJ€ ijula ()+Kgl*ul,6_fr,€> ceNg), r=1,...,n,
e

=1 i=1 j=1

where (u¢)e, (AZ] 6) (K”l) and (frc)e, 7,0 = 1,...,n, are respective representatives of .,
g:]l, K™ and fr

We give the main result of this section.

Theorem 5. Let f = (faa + feor) € (Daaa)™, the equation (27) admits a generalized

solution u € (Ypqq)" on I if and only if there exist U € (9,q)" and w € (¥4 )" such that
L,v= ﬁm on R, (28)

and N
Low = feor on J. (29)

< I U = (Uaa + Ucor) € (Daaa)™ is a generalized solution of (27 ), then the equations (27)
explicitly are written as follows

( P q N~
Z(ZZA (ijal)(l)‘f‘Ku*ﬁl) = fi1,

=0 3j=0

Let (uga,e)e, (ucor,l,e)a (Awla) (Krl)e, (faate)e and (feorie)e be respective representatives

of Uga,i, Ucors Awl, K" faal and feor, 1 <1< n.Foreveryr=1,...,nand ¢ € I, denoting
n P q ()
1 1
Saa,r,e = Z Z Z A:j € (ij uaa,l,e) + Kg * Uga,le |
=1 \i=1 j=1

p q
- l (@) l
SCOT%E T Z (Z Z A:j € Tw]'ucor,l,a) + Kg * ucor,l,a) )

=1 \i=1 j=1

we have Ve € I, Spure € PBaa and Seorre € By, and also [(Suare)s] € Yo and
[(Scorre)e] € D4 0. Since u is a generalized solution of (27) on J, it means that

(VkeZy)(Vm>0)(Fep >0)Fer €I) (Ve <eg) (Va e)

D 1SS @) = [ (@) + S o(2) = ), (@) Sepe™, r=1...m (30)
J<k
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For any real sequence (S,,)men, such that s, — +oo there exist (Smp(s) )p a subsequence
of (Sm)men, such that taking the translate at Smy(e) — Smy(., D the estimate (30) and let
p,q — +00, we obtain due to [9, Proposition 9], that

VkeZyi)(Vm>0)3cx >0)(Fep€I) Ve <eg) (Vz el)

> ISD, (z) = £D, (@) S are™  (Vr=1,...,n),
i<k

consequently, by |9, Proposition 3 (5)], it holds

VkeZy)(Vm>0)(Fep, >0)(Fer € 1) (Ve <ex)

|Saare = faarelp oo < cr€™ (Vr=1,...,n),
i e.

(Saasre = faare), € Na[R) (Vr=1,...,n), (31)
which means that ugq, = (Uaq,1,- .-, Ugan) 1S a generalized solution of (28) on R. By (30)

and (31), we deduce

(Scor,r,e - fcor,r,.e)8 € JV@(J) (VT = 17 <o 7n)7

i.e. Ueor = (Ucor,1,- - - Ucor,n) 1S a generalized solution of (29) on J.

Conversely if there exist U € (¥,,)" and w € (¥4 0)" such that (28) and (29) hold, then
we have U := (U4 W) € (Yaaa)” is a generalized solution of (27) on J. >

REMARK 3. Theorem 5 generalizes Theorem 6 of [21] and Theorem 3 of [9].

As a particular case we consider linear systems of ordinary differential equations

U+ Au = f, (32)
where A4 is a square matrix of almost automorphic generalized functions.

Corollary 1. Let f = (ﬁm + .ﬁ@r) € (9400)", the system (32) admits a generalized
solution U € (Ypqq)" on J if and only if there exist U € (9,,)" and w € (¥4 )" such that

T4 Av = J?;a on R,
and . N B
W+ AW = feor on J.
Let w = [(us)e] € 95, o € R and define the primitive of u by U= [(Ue)e], where

T

U:(z) = /ug(t) dt, eel.

zo

Corollary 2. A generalized function U = (ﬁaa + ﬁwr) € Yy is a primitive of
U = (Ugq + Ucor) € Daaa on J if and only if

Ugue 1s a primtive of g, on R,

and

Ueor is a primitive of Ucor on J.
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BiajmkaBkazckuii MareMaTHIECKUH Ky pPHAJT
2023, Tom 25, Beriryck 2, C. 3855

ACUMIITOTNYECKAA ITOYTU ABTOMOPO®HOCTbD
JJ1d AJITEBP OBOBIIEHHBIX ®YHKIIWI

Byszap 1!, Crmmann M.!

1 .
JlaGoparopusi MaTeMaTHIYeCKOTO AHAJIN3A U TIPUJIOKEHU,
Vuusepcurer Opan 1, Axmen Ben Besuta, 31000, Opan, Amxup

E-mail: ch.bouzar@gmail.com, meryemslimani®@yahoo.com

Awnnorauus. [lesb cratbu — u3y4yeHue MOHATHE ACUMIITOTUYECKON MOYTH ABTOMOP(MHOCTH B KOHTEKCTE
0606uieHHbIX dyHKIMA. BBoguTcs aaredbpa acUMITOTHYECKH [TOYTH aBTOMODPMHBIX O00OONIIEHHBIX (DYHKIINH,
COJIEPZKAINNX MPOCTPAHCTBO TVIAJIKAX ACUMIITOTHYECKH ITOYTH aBTOMOPMHBIX DYHKINN KakK momaarebpy. PyH-
JTaMEHTAJbHOe 3HAYEHHE 9TON aareOphbl CBsA3aHA C HEBO3MOXKHOCTBIO YMHOXKEHUSI PACIPEIEIEHU; OHO TaKKe
COJIEPXKAT ACUMIITOTHYECKH ITOYTH aBToMopdHbIe pacnpeenenust CobosreBa — [IIBapria Kak MOAIIPOCTPAHCTEO.
Bousee Toro, mokasamo, 9To BBefeHHAs agredpa yCTOWINBA OTHOCUTEIBHO HEKOTOPBIX HEJIMHEIHBIX OIepPaIinii.
Kak nobounoro pesysibrara npuBoguTcsa pe3yiabrar Tuna Cuau o npojosikennn (byHKIMA B KOHTEKCT aJirebpbl
OrpaHUYEHHBIX 0DOOIIEHHBIX (DYHKIHI 1 ajaredpbl OrpaHUYEHHBIX 0O0OIIEHHBIX (DYHKIWIT, 0OpaIaAonuxcs B
HYJIb Ha OECKOHEIHOCTH; 9TU PE3YJIbTATHI NCIIOIb3YETCH [ IOKA3ATEIHCTBA (DYHIAMEHTATHLHOTO PE3YIbTATA O
€IMHCTBEHHOCTHU PA3JIOKEHUsT aCUMIITOTHYECKH [TOYTH aBTOMOPGHON 0600mennoit dyuknnu. B kadecrse mpu-
JIOXKEHUI pacCMOTPEHBI Pa3HOCTHO-nddepeHnnaIbHble CUCTEMbl HEHTPAJIBLHOIO THIIA B PAMKaX HM3y4aeMoii
ajrebpa 0OOOIIEHHBIX (DYHKITHIA.

KiroueBble cjioBa: acCUMIITOTUYECKAsl IOYTH aBTOMODMHOCTH, 0000IIeHHble (DYHKINU, HEHATpaIbHbIE
nuddepeHInaaIbHO-PA3HOCTHBIE YPABHEHNS.
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