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Abstract. In medical sciences, during medical exploration and diagnosis of tissues or in medical imaging,
we often use mathematical models to answer questions related to these examinations. Among these models,
the nonlinear partial differential equation of the Khokhlov—Zabolotskaya—Kuznetsov type (abbreviated as
the KZK equation) is of proven interest in ultrasound acoustics problems. This mathematical model
describes the nonlinear propagation of a sound pulse of finite amplitude in a thermo-viscous medium.
The equation is obtained by combining the conservation of mass equation, the conservation of momentum
equation and the equations of state. It should be noted that for this equation little mathematical analysis
is reserved. This equation takes into account three combined effects: the diffraction of the wave, the
absorption of energy and the nonlinearity of the medium in which the wave propagates. KZK-type equation
introduced in this paper is a modified version of the KZK model known in acoustics. We study a class
of the Khokhlov—Zabolotskaya-Kuznetsov type equations for the existence of global classical solutions.
We give conditions under which the considered equations have at least one and at least two classical
solutions. To prove our main results, we propose a new approach based on recent theoretical results.
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1. Introduction and Statement of the Main Results

In this paper, we investigate the following class of the Khokhlov—Zabolotskaya—Kuznetsov
type equations
u:))gt - (f(ut))t + IB(t’ 'I)uttt + W(ta ,I)Ut + u:lel + uZBQZBQ’
t>0, =
u(0,2) = up(x), == (x1,22,13) € R, (1.1)

u(0,7) = ur(z), == (v1,22,73) € R?,

= (w1, 72,23) € R3,

u (0, ) = ua(x), = (w1,29,73) € R,

(© 2023 Bouakaz, A., Bouhmila, F.; Georgiev, S. G., Kheloufi, A. and Khoufache, S.
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where
(H1) ug,ur,us € €*(R3), 0 < ug, ur,ug < B on [0,00) x R3 for some positive constant B,
B,7 € €([0,00) x R3), B> 0on [0,00) x R, B,|y| < B on [0,00) x R3, f € %'R) and

‘f/(v” < al(t’x) + a2(t,:ﬂ)|v|p, (t,:ﬂ) € [O’OO) X Rg,

ar,az € €([0,00) x R?), 0 < ay,as < B on [0,00) x R3 p=>0.

Description of nonlinear acoustics was the origin of the derivation of the Khokhlov—
Zabolotskaya—Kuznetsov (KZK) equation, see [1] and [2]. Later, its fields of application
expanded considerably. The KZK equation is the mathematical model of phenomena with
effects of diffraction and of absorption, which can provide shock formation. It contains a
nonlocal diffraction term, an absorption term and a nonlinear term, it can be used as a model
that describes the propagation of the ultrasound beams in the thermo-viscous fluid [3, 4].
The KZK parabolic nonlinear wave equation is one of the most widely employed nonlinear
models for propagation of 3D diffraction sound beams in dissipative media. It is also used for
modeling of an electrohydraulic lithotripter [5]. A derivation of the KZK scalar equation for
incompressible materials is provided in [6]. Mathematical and numerical analysis of the KZK
equation can be found in several papers, see for example [7] and [8]. In [9], the exact analytical
solutions of (3+1)-dimensional time fractional the KZK equation have been constructed in the
sense of modified Riemann-Liouville derivative. In [10], invariant solutions for the modified
the KZK equation are obtained by using classical Lie symmetries. Accurate numerical methods
to simulate the KZK equation are important to its broad applications in medical ultrasound
simulations [11].

The aim of this paper is to investigate the initial value problem (IVP) (1.1) for existence of
global classical solutions. Here, by a classical solution u to the first equation of (1.1) we mean
a solution at least twice times continuously differentiable in # and three times continuously
differentiable in t for any t > 0. In other words, u belongs to the space €3(]0, 00), €%(R?))
of three times continuously differentiable functions on [0,00) with values in the Banach
space €2(R3). So, suppose that

(H2) there exist a positive constant A and a function g € €([0,00) x R3) such that g > 0
on (0,00) x (R*\(Uj_;{z; = 0})) with
9(07'%') - g(ta 0,.%'2,%'3) = g(t7x1707w3) = g(tw%'lana 0) - 07 te [07 OO), HARS Rga

and

3 t| x
6.29(1—{—t—|—7§2_|_t3_|_t4_|_t5_|_t6)H(1+|xj|+x?)/ /g(tl,s)ds dt; < A,
i=1 0 10

(t,z) € [0,00) x R3, where [ = [ [o7 [o*, ds = dssdsads. In the last section, we will give
an example for a function g that satisfies (H2). Assume that the constants B and A which
appear in the conditions (H1) and (H2), respectively, satisfy the following inequalities:
(H3) AB; < B, where By = (B + BP™') B+ 2B* 4+ 4B,
and
(H4) AB; < %, where B] = (B + Bp“) B +2B?+ 4B and L is a positive constant that

satisfies the following conditions:
A 1
r<L<Ri<B, Ri+—Bi>|—+1]|L,
m om

with positive constants r and R; and m > 0 is large enough.
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Our main results are as follows.

Theorem 1.1. Under the hypotheses (H1), (H2) and (H3), the IVP (1.1) has at least
one solution belonging to €3([0,00), €?(R?)).

Theorem 1.2. Under the hypotheses (H1), (H2) and (H4), the IVP (1.1) has at least
two solutions belonging to u € €3(]0,00), €?(R3)).

The paper is organized as follows. In the next section, we give some auxiliary results. In
Section 3 we give some properties of the solutions of the problem (1.1). In Section 4, we prove
Theorem 1.1 and Theorem 1.2. In Section 5, we give an example to illustrate our main results.

2. On Fixed Points for the Sum of Two Operators

In this section, we will recall two results which concern the existence and multiplicity of
fixed points for the sum of two operators. The proof of the following theorem can be found
in [12].

Theorem 2.1. Let E be a Banach space and E1 = {x € E : ||z| < R}, with R > 0.
Consider two operators T and S, where Tx = —ex, v € E1, withe >0 and S : E1 — E be
continuous and such that

(1) (I —S)(E1) resides in a compact subset of E and

(i) {z € E:x =X — S)z, |z| = R} = @, for any X € (0, 1).

Then there exists x* € Eq such that
Tx* + Sx* = z*.

In the sequel, E is a real Banach space.

DEFINITION 2.1. A closed, convex set &2 in E is said to be cone if

1) ax € & for any a > 0 and for any x € 2,

2) z,—x € & implies © = 0.

DEFINITION 2.2. A mapping K : E — FE is said to be completely continuous if it is
continuous and maps bounded sets into relatively compact sets.

DEFINITION 2.3. Let X and Y be real Banach spaces. A mapping K : X — Y is said to
be expansive if there exists a constant A > 1 such that

1Kz — Kylly > hje -yl

for any x,y € X.

The details of the proof of the following result can be found in [13].

Theorem 2.2. Let &2 be a cone of a Banach space E;  a subset of & and Uy, Us
and Us three open bounded subsets of & such that U; C Uy C Us and 0 € U;. Assume
that T : Q — & is an expansive mapping, S : Us — E is a completely continuous and
S(U3) € (I —T)(S). Suppose that (U\U1) N Q # @, (Us\Us) N Q # @, and there exists
wo € Z\{0} such that the following conditions hold:

(1) Sx # (I —=T)(x — Awy), for all A > 0 and x € OU; N (2 + Awyp);

(9) there exists € > 0 such that Sz # (I —T)(A\x), for all A\ > 14¢, x € Uy and Az € §);

(tit) Sz # (I = T)(xz — Awy), for all A > 0 and x € OUs N (L + Awy).

Then T + S has at least two non-zero fixed points x1,x9 € & such that

z1 €Uy N and xo € (U3\U2) NneQ

or

T € (UQ\Ul) N and z9 € (Ug\UQ) N Q.
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3. Some Properties of the Solutions of the Problem (1.1)
Let X = €3([0,00), 6%(R3)) be endowed with the norm

l|lul| = max{ sup lu(t, z)], sup lug(t, )],
(t,z)€[0,00) X R3 (t,z)€[0,00) xRR3
sup |ugqt (t, )], sup lug (t, )], sup lugee (t, )],
(t,z)€[0,00) XR3 (t,z)€[0,00) XRR3 (t,z)€[0,00) xR3
sup |ug, (t, )], sup |tg,z, (t, )], @ € {1,2,3}},
(t,z)€[0,00) xRR3 (t,z)€[0,00) X R3

provided it exists. For v € X, define the operator S as follows:

¢ t
Siu(t,x) = u(t,x) — ug(x /u1 /t—suz
0 0

l\')l»—\

/ (t — ) f/(ue(s,2))up (s, ) + B(s, ) upe (s, ) — Ugge(s, ) + (8, 2)us(s, )
0

+ Ugyaq (8, @) + Ugyay (8, 2) + uttt(s,x)> ds, (t,x €[0,00) x R3.
Lemma 3.1. Suppose that (H1) holds. If u € X satisfies the equation
Syu(t,r) =0, (t,z) €[0,00) x R3, (3.1)

then u is a solution to the IVP (1.1).
< By (3.1) and the definition of the operator S;, we find

0=u(t,x) —up(x) — /ul(s) ds — /(t — s)ug(s) ds
0 0

t
(3.2)
— % /(t — 5)2 (f’(ut(s, ) ug (S, ) + B(s, ) Ut (s, ) — Uggt(s, x)
0
+ (s, 2)u(s, ) + Ugyay (8, %) + Ugyay (S, @) + (s, ac)) ds,
(t,x) € [0,00) x R3. We differentiate with respect to t the equation (3.2) and we find
t t

0=wu(t,z) —ui(z) — /ug(s) ds — /(t —s) (f'(ut(s,m))utt(s,x) + B(s, ) ue (s, x)

J ) (3.3)

gt (3,2) + (5,0t (5,) + Uz (5, 7) + gz (5,2) + e (5,) ) d,

(t,z) € [0,00) x R3, i. e., u satisfies the first equation of (1.1). Now, we differentiate with
respect to t the equation (3.3) and we get

t

0 =uy(t,z) —uz(z) — / (f’(ut(s,m))utt(s,x) + B(8, ) ut (S, ) — Uggt(s, x)

0
(5, ) (5,) + Uz (5, 7) + gy (5,2) + usae(5,) ) d,

(3.4)
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(t,x) € [0,00) x R3. We differentiate with respect to t the last equation and we find

0 = up(t, ) — f(us(t, 2))uge (t, x) — B, 2)uge (t, ) + st (£, 1) — Y(t, 2)ug (t, )
— Ugy g (b, ) = Uy (8, ) — wgee (t, ) = — f (g (L, ) Juge (t, ) — B(L, ) g (, )
+ umst(t’ :C) - 7(75’ x)ut (t’ x) — Ugyay (t’ x) — Ugozy (t’ :C),
(t,z) € [0,00) x R3. Now, we put t = 0 in (3.2), (3.3), (3.4) and we get
u(0,2) = up(z), u(0,2) =ui(x), u(0,z) =us(x), z€R3,

respectively. Consequently wu satisfies the second, third and fourth equations of (1.1). This
completes the proof. >

Lemma 3.2. Suppose that (H1) holds. If u € X, ||u|]| < B, then
|Stu(t,z)] < Bi(L+t+t*+%), (t,z) € [0,00) x R,

where By is the constant defined in (H3).
< Suppose that (H1) is satisfied and let w € X, with |u]| < B. Then, for

(t,z) € [0,00) x R3, we have
t
(t,x) — up(x) — / /t—su2
0

—% /(t—s)2 <f’(ut(s, x))ug (s, ) + B(s, ) upe (s, ) — uzgt (s, ) + Y(s, 2)ur(s, ) + Ugyzy (8, 2)
0

t t
< Jult,z)| 4 uo(z +/u1 ds+/t—su2
0 0
t

+ % /(t - s)2<‘f'(ut(s,x))‘ ‘utt(s,x)‘ + ﬁ(s,x)‘uttt(s,x)‘ + ‘umgt(s,x)‘
0

{Slutx{—

+ Ugyu, (8, ) + wp (s, x)) ds

—l—"y(s,x)Hut(s,x)‘ + ‘uxlxl(saw)‘ + ‘uxgxz(sax)‘ + ‘uttt(sax)‘> ds
t
<2B+tB+t*B + /(t —5)% ((a1(s, @) + aa(s, ) ur(s, 2)[P) B + 2B* + 4B) ds
0
<2B+tB+t*B+t*((B+ BB +2B* +4B) < Bi(1+t+ ¢ +1°).

This completes the proof. >
For u € X = €3([0,00), €%(R3)), define the operator Sy as follows:

t x 3
Sgu t, x // t —tl H(CC] — SJ) (tl, )Slu(tl, )dsdtl, (t,x) € [0,00) X R3, (35)
0

J=1

where g is the function which appears in the condition (H2).

Lemma 3.3. Under hypothesis (H1) and (H2) and foru € X, with ||u|| < B, the following
estimate holds:
[Saull < ABy,

where By is the constant defined in (H3).



Existence of Classical Solutions for a Class of the Khokhlov—Zabolotskaya—Kuznetsov

41

< Suppose that (H1) and (H2) are satisfied and let u € X, with [jul| < B
(i) The estimation of |Sau(t, )|, (t,x) € [0,00) x R3 :

|Saul(t, )

t x 3
//(t — tl)g H(xj — Sj)QQ(tl, s)Slu(tl, 8) dsdt1
0 0

t x 3
/ /t—tl H tl, ‘Slu tl, ‘ds dtl
0 0 J=1
t x 3
Bl/ /t—t1 (14t + 63 +18) H g(t1,s)ds| dt,
0 j=1
t x
\B129H:njt3(1+t+t2+t3 / /gtl, Yds|dt; < AB;.
J=1 0 !0

(ii) The estimation of {% Sou(t,z)|, (t,x) € [0,00) x R3:

t x 3
0
aSQU(t x) =3 //t—tl H tl, )Slu(tl, )dsdt1
0 J=1
t T 3
<3/ /t—t1 H g(t1,8)|Srulty, s)| ds| dty
0 0 J=1
t 3
331/ /t—t1 M+t + 8 +8) [J (s — 55)°9(t1,5) ds| dty
0 !0 j=1

t
<3B129Hx§t2(1+t+t2+t3/ dt; < AB;.
0

j=1

X
/9 t1,s)ds
0

(ili) The estimation of ‘g—; Syu(t, z)|, (t,x) € [0,00) x R?:

3
t—tl H — S] tl, )Slu(tl, )dsdt1

T

dtq

t
o
0 '0

3
/t—tl H tl, |Slu tl, ‘ds
]:
t
631/
0

t
\63129Hx§t (1+t+12+17) /
j:l 0

:jm

(z; — 55)%g(t1, s) ds| iy

T
/t—t1 14t +tf +t3)
0

1

<.
Il

g tl, dS dtl ABl

O\H




42 Bouakaz, A., Bouhmila, F., Georgiev, S. G., Kheloufi, A. and Khoufache, S.

(iv) The estimation of ‘g—;Sgu(t,x)L (t,x) € [0,00) x R3 :

8

3
/ tl, )Slu(tl, )dsdt1
0

j=1

dtq

T3
/H(x] — sj)Qg(tl, s)‘Slu(tl, s)| ds
0

dtq

1

3
/(1+t1+t2+t3H i —55)%g(t1, s)ds
/ .

xT

/g tl) dS

0

dtl ABl.

J
3 t
<6812 [[27(1+t+17+1%) /
j:l 0

(v) The estimation of {% Squ(t,z)|, (t,) € [0,00) x R? :

l

t x
9 2
00207 Sou(t,x)| = // (t— t1)2 ]l:Il(x] — sj)Q(xg — s3)g(t1, 8)S1u(ty, s) dsdt,
5 =
t x 2
6/ / t—tl H j T3 —53)g(t1,5)‘51u(t1,8)‘d5 dtl
5 j=1
¢ 2
<GB1/ /(t—t1)2(1+t1+t%—|—t3 H i —55)(v3 — s3)g(t1, 5) ds| dty
00 J=1

T

¢
< 6B; 28Hx2]x3\t2(1+t+t2+t3 / /gtl, ds| dt, < AB.
J=1 0'o0
(vi) The estimation of ‘8%3 Squ(t,z)|, (t,x) € [0,00) x R3:
9 2
— Sqult, = (t—t1) — — t Sru(t dsdt
o su(t, z) 1) 1;[ sj)? (x5 — 83)g(t1,8)S1u(ts, s) dsdty

.%'3 — 83) (tl, s)‘Slu(tl, 8)‘ ds dtl

:jw

\“

]

T
/t—t1
_]:

2
/(t—t1>3(1+t1+t%+t3H 53)2(xs — 53)g(t1, 5) ds
J b

< 3By dty

o . -

xT

/g tl) dS

dtl ABl.

t
331281_[902 23| 2 (1 +t + 2+ t7) /
Jj=1 0
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(t,z) € [0,00) x R3 :

(vii) The estimation of {g—; Sou(t, )|,
3
xT

t 2
//(t — tl)g H(xj — Sj)QQ(tl, s)Slu(tl, S) detl
0 0

32

Sou(t,x)| =3

Bmg

T

2
/t—t1 H = S5) (tl,s)‘Slu(tl,s)‘ds
0

]:

dtq

—

<3B; dty

o . -

2
/(t —t1)*(1+t1+t] +17) H(mj —5)g(t1,s)ds
0 j=1

T
/g tl) dS

t
< 3B,2° Hm?ﬁ(l it 4 t) / dt) < AB;.
0

J=1

As above,

9 Sou(t,x)|,

< ABy, (t,z) €[0,00) x R3, j=1,2.
Ox;j

a9 SQU(ta CC)

i
J

Thus, ||[Sou|| < B. This completes the proof. >
Lemma 3.4. Suppose (H1) and (H2). If u € X satisfies the equation

Sou(t,z) =C, (t,z) € [0,00) x R3, (3.6)

where C' is an arbitrary constant, then u is a solution to the IVP (1.1).

<1 We differentiate four times with respect to ¢ and three times with respect to xj,
l €{1,2,3}, the equation (3.6) and we find

g(t,x)Siu(t,z) =0, (t,z) €[0,00) x R3,

3
Siu(t,z) =0, (t,z) € (0,00) x <R3\< U{x] = O}))

Since Syu(,-) € €([0,00) x R3), we get

whereupon

0 = lim Sju(t,xz) = S1u(0,z) = lim Sju(t,z) = Siu(t,0,z9,x3) = lim Siu(t,z)
t—0 z1—0 z2—0
= Siu(t,z1,0,z3) = lim0 Syu(t,z) = Siu(t, z1,29,0), (t,z) € [0,00) x R3.
r3—r
Thus,
Syu(t,r) =0, (t,z) €[0,00) x R3,

Hence and Lemma 3.1, we conclude that u is a solution to the IVP (1.1). This completes
the proof. >
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4. Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. Assume that the hypotheses (H1), (H2) and (H3) are satisfied.
Choose € € (0,1), such that eBj(1 + A) < B. Let Y denote the set of all equi-continuous

families in X with respect to the norm || - ||. Let also, ¥ = Y be the closure of Y,

?:?U{UQ,U&,UQ}, _
Y ={ueY :|u| <B}.

Note that Y is a compact set in X. For u € X, define the operators T and S as follows:
Tu(t,z) = —eu(t,z), (t,z) € [0,00) x R3,
Su(t, ) = u(t,z) + eu(t, z) + eSqu(t,z), (t,x) € [0,00) x R3,

where Sy is the operator given by formula (3.5). For u € Y, using Lemma 3.3, we have

(I = S)ul|| = ||euw — eSaul| < €l|lu|| + €]|S2u|| < eB1 +€AB; = eBi1(1+ A) < B.
Thus, S : Y — X is continuous and (I — S)(Y) resides in a compact subset of X. Now,
suppose that there is a v € X so that ||u| = B and

u=AI—-S)u or %u: (I —S)u=—eu—eSou or <§ +e> u = —eSyu

for some A € (0,1). Hence, ||Soul < AB; < B,

1 1
B < (x " ) B= (x ¥ ) Jull = € 1Szull < €B,

which is a contradiction. Hence and Theorem 2.1, it follows that the operator T4 .S has a fixed
point u* € Y. Therefore

u*(t,x) = Tu*(t,z) + Su™(t,z) = —eu™(t,x) + u*(t, z) + eu™(t,x) + eSau™(t, x),
(t,z) € [0,00) x R3,

whereupon
0= Sou*(t,x), (t,x) € [0,00) x R,

From here and from Lemma 3.4, it follows that u is a solution to the IVP (1.1). This completes
the proof of Theorem 1.1.

Proof of Theorem 1.2. Assume that the hypotheses (H1), (H2) and (H4) are satisfied.
Let B
P={ueX:u>0onl000) xR

With & we will denote the set of all equi-continuous families in P.Forv € X , define
the operators T7 and S3 as follows:

L
Tiv(t,x) = (1 +me)v(t,x) —€ 10’ (t,x) € [0,00) x R,

L
Szv(t,x) = —eSqv(t,z) — mev(t,z) — e —, (t, ) € [0,00) x R,

10
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where € > 0 and S is the operator given by formula (3.5). Note that, by Lemma 3.4, it follows
that any fixed point v € X of the operator T} + S5 is a solution to the IVP (1.1). Let us define
the following sets:

Uy=P,={ve P || <r}), Ups=P,={veP:|v| <L}

Us = f@Rl = {U S HUH < Rl}, 0= f@RQ = {U S ”UH < RQ},
WlthRQZRl—F%Bl—{—ESLm
1. For vy, v € §2, we have

[T1v1 — Thve|| = (1 + me)|[vr — val|,

whereupon 17 : €2 — X is an expansive operator with a constant h = 1 + me > 1.
2. For v € PR, we get

L L
|S3v|| < €||Sov|| + me ||v|| + 61—0 < 6<A31 +mRy + E)

Therefore S3(Zg,) is uniformly bounded. Since S3 : #r, — X is continuous, we have that
S3(PR, ) is equi-continuous. Consequently S3 : P, — X is completely continuous.
3. Let v1 € PR, . Set

1 L
vg = v + — Savr + —.
m om

Note that Sqv; + % > 0 on [0,00) x R3. We have vy > 0 on [0,00) x R and

1 L A L
[vo|l < floall + = [[S2v1ll + = < R+ — Bi + -— = Ro.
m 5m m 5m
Therefore vy € 2 and
€MV =— —€MvU] €02V € 10 € 10

or

L
(I —Th)ve = —emuy + € 0= S3v1.

Consequently S3(Zr,) C (I —T1)(Q).
4. Assume that for any vy € £* = 2\{0} there exist A > 0 and v € 922, N (2 + Avg) or
v € 0P, N (2 + Avg) such that

Sg?} = (I — Tl)(?} — )\Uo).

Then I
—€eSov — mev — € 0= —me(v — Avg) + € 1
or I
—Ssv = Amug + 5
Hence,

L

This is a contradiction.
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5. Let 1 = % Assume that there exist w € 02, and \; > 1+ €1 such that \jw € PR,
and
Sgw = (I — Tl)()\lw).

Since w € 0221, and \jw € PR, it follows that

2 A L
—+1 L<)\1L:)\1HU)H <R +—B+—.
om m om
Moreover,
—€Sow — mew — € 0 = —A\imew + € 0’
or
L
Sow + 5= (A — Dmuw.
From here,
L L
2 5 > ||Sow + 5= (M = D)m|w] = (M — 1)mL
and
2
— 4+ 1> A,
om

which is a contradiction.
Therefore all conditions of Theorem 2.2 hold. Hence, the problem (1.1) has at least two
solutions u; and ug so that
sl = L < lluzll < Ry

or
r< flun]l < L < ugfl < Bi-

This completes the proof of Theorem 1.2.

5. An Example

Take
h(s) = log i i_ zigizzz, l(s) = arctan 181_17\8/22_2, seR, s#=£1.
Then
B (s) = 22v/25°0(1 — %) . U(s) = 1V2s10(1 + 822), sER, s+l
(1 — s'1y/2 + 522)(1 + s114/2 4 522) 1+ s
Therefore

—o0 < lim (1+4s+ 32)3h(s) <oo, —oo< lim (1+s+ 32)3l(s) < 00.

s—+o0 s—+o00

Hence, there exists a positive constant C] so that

1 1+811\/§+822 1 811\/5
arctan ——=

2\3
(1+s5+s) (44\/510g1—511\/§+s22+22\/§ T

)gCl, seR.
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Note that lims_,+1[(s) = § and by [14, p. 707, Integral 79], we have

/ dz = 1 log1+Z\/§+Z2+ ! arctan Z\/i.
1+24 42 1—2v2422 22 1— 22
Let 0

s
and

g1(t,z) = Q()Q(x1)Q(x2)Q(x3), t € [0,00), = = (x1,72,23) € R,
Then there exists a constant C' > 0 such that

xT

/gl(T, z)dz

0

3 t
6-29(1+t+t2+t3+t4+t5+t6)H(lﬂmj\+x§)/ dr < C,
0

—

<

(t,x) € [0,00) x R3.

Let A
g(t,x) = Egl(t,x), (t,x) € [0,00) X R3.

Then

xT

/g(T, z)dz
0

i. e., (H2) holds. Now, consider the following initial value problem

. (7 1
B Ie) D e e e e B

+ Ut + Ugyzy + Uggzy, >0, = (21,29,23) € R3, (5.1)
1 1 1

=—7, w0,2)=——7—7—=, up0,2)=——7—,
l—i—x%—i—x% i ) 1+3x?+x% i ) l—i—xélg—i—xg

3 t
6-29(1+t+t2+t3+t4+t5+t6)H(1+|xj|+x§)/ dr < A,
0

—_

j:
(t,z) € [0,00) x R3,

ttt

u(0,x) x € R,
so that (H1) holds, with B =1, p = 1. Take

1
B=p=1 and A= _—.

80
Then
Bi=(B+ B )B+2B*+4B=2+2+4=38
and .
AB; = — < B.
IRET

So, the hypothesis (H3) is fulfilled. Thus, the hypotheses (H1), (H2) and (H3) are
satisfied. Hence, by Theorem 1.1, it follows that IVP (5.1) has at least one solution
u e €3(0,00), €2 (RY)).
In the sequel, take
1 1

Ri=10, L=5 r=4 m=100 A=_— e=-—
L= . " 800 T 5Bi(1+A)
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Clearly,
A 1 L
r<L<R<B, €>0, Ri+—Bi>(—+1|)L, AB; < —,
m om 5
i. e., (H4) holds. Hence, by Theorem 1.2, it follows that Problem (5.1) has at least two

nonnegative solutions u,v € €3([0,00), €2(R?)).
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TUIIA XOXJIOBA — 3ABOJIOLIKOI — KY3HEILIOBA
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Ansoranusi. B MeaunuHCKIX HayKax, BO BPeMsl MEJIUIIMHCKOIO MCCJIEIOBAHUS U JIMAIHOCTUKYU TKAaHeH
UJIA OPpU MEJUITMHCKON BU3yaJIM3allui, MBI 9aCTO MCIIOJIb3yeM MaTeMaTHdeCKue MOJEJH [ OTBeTa Ha BO-
[IPOCHI, CBA3aHHBIE C TUMHU HUcciegoBaHusaMu. Cpeln 3TUX MOesiell 3HAYUTEIbHBIA MHTEPEC MPEeCTaBJIsieT
HeJINHENHOe ypaBHEHUE B YACTHBIX [IPOM3BOAHLIX TUIIA X0xJs0Ba — 3abosonkoii — Kysuerosa (CoKparieHHo —
ypasaenune X3K) B 3a/1a9ax yIbTPa3BYKOBOH aKyCTUKU. DTa MATEMATHIECKAS MOJIE/b ONUCHIBACT HEJTMHEHHOE
pacmpocTpaHeHne 3BYKOBOTO UMITY/IbCA KOHETHON aMIJINTYIbI B TEPMOBSA3KOM cpesie. Y DaBHEHHE IOy IaeTCs
myTeM OObeIHEHUsI yPABHEHUsI COXPAHEHMsI MACChl, YPaBHEHHSI COXPAHEHUsI UMILYJIbCA U YPABHEHHI COCTO-
suns. Cjemyer OTMETUTDb, 9TO JIJIsi 9TONO YPABHEHUS MAJIO0 MaTEMATHYECKOrO aHAJIU3a. DTO ypaBHEHUE yUU-
TBIBAET TPU KOMOMHUPOBAHHBIX 3 deKTa: AudPAKIIIO BOJHBI, TOTJIONIEHNE SHEPTUN U HEJIMHEHHOCTD CPeJIbl,
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B KOTODPOI pacnpocTpaHsercs BojHa. ¥YpasHenue tuna X3K, npencrasiennoe B jgaHHON paboTe, MpecTas-
JisieT coboit MmomudunmpoBanHyo Bepcuto mojenu X3K, nsBectHoit B akycTuke. M3ydyaercs: KjiacC ypaBHEHMIA
Tuna XoxJyioBa — 3abosornkoit — KysHeroBa Ha mpeaMer CyniecTBOBaHUs IVIODAJIBHBIX KJIACCHYECKUX Delle-
uunii. [IpuBeseHnl yCaoBus, IpU KOTOPBIX PACCMaTPUBAEMble YPABHEHUS UMEIOT XOTsl Obl OJHO WJIU XOTs Obl
JIBA KJIACCUYeCKUX perrenus. J[ist 1oKa3aTe/ibcTBa OCHOBHBIX PE3yJIbTATOB MBI IIpeJjiaraeM HOBBIA IOIXO,
OCHOBaHHBII HA HEJIABHUX TEOPETUYECKUX PE3YIbTATAX.

KiroueBble ciioBa: ypaBHeHne Tura XoxJioBa — 3abosorkoit — KysneroBa, riiobajibHOe KJIaCCHIeCKOoe
pellleHre, HEeloBUXKHAsl TOYKa, CyMMa OlEPATOPOB, HaYajIbHas 3a/a49a.
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