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Abstract. Suppose X and Y are locally solid vector lattices. A linear operator T : X → Y is said
to be nb-compact provided that there exists a zero neighborhood U ⊆ X, such that T (U) is compact
in Y ; T is bb-compact if for each bounded set B ⊆ X, T (B) is compact. These notions are far from
being equivalent, in general. In this paper, we introduce the notion of a locally solid AM -space as an
extension for AM -spaces in Banach lattices. With the aid of this concept, we establish a variant of the
known Krengel’s theorem for different types of compact operators between locally solid vector lattices.
This extends [1, Theorem 5.7] (established for compact operators between Banach lattices) to different
classes of compact operators between locally solid vector lattices.
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1. Motivation and Introduction

Let us start with some motivation. Let E be a Banach lattice. E is called an AM -space
provided that for each x, y ∈ E+, we have ‖x ∨ y‖ = ‖x‖ ∨ ‖y‖. The remarkable Kakutani
theorem states that every AM -space is a closed sublattice of some C(K)-space, in which K is
the compact Hausdorff topological space. Now, suppose E is a Banach lattice and F is an AM -
space. The Krengel theorem states that every compact operator T : E → F has a modulus
which is defined by the Riesz–Kantorovich formulae; that is |T |(x) = sup{|Ty| : |y| 6 x} for
each x ∈ E+; furthermore, |T | is also compact. So, we conclude that AM -spaces have many
interesting properties among the category of all Banach lattices. Therefore, it is fascinating
and significant to consider the AM -spaces and numerous applications in the operator theory
for locally solid vector lattices and operators between them. In this paper, we consider locally
solid vector lattices whose family of pseudonorms which generate the topology of X, preserve
the finite suprema; we call them: locally solid AM -spaces. This definition extends AM -spaces
to the category of all locally solid vector lattices. Note that a variant of this notion has been
defined by the author in [2]; however, that definition has a mild gap so that we consider the
new definition using the generating pseudonorms. Moreover, observe that there are several
different ways to define bounded and compact operators between locally solid vector lattices.
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In this paper, we are going to generalize the known Krengel theorem [1, Theorem 5.7] for
different types of compact operators between locally solid vector lattices.

Note that a subset A of a vector lattice X is called solid provided that x ∈ X, y ∈ A and
|x| 6 |y| implies that x ∈ A. Moreover, a pseudonorm ρ on a vector lattice X is a real-valued
function on X that satisfies the following properties.

(i) ρ(x) > 0 for each x ∈ X;

(ii) ρ(x+ y) 6 ρ(x) + ρ(y) for each x, y ∈ X;

(iii) ρ(λx) → 0 as λ → 0, for each x ∈ X;

(iv) ρ(x) 6 ρ(y) whenever |x| 6 |y| for each x, y ∈ X.

For undefined terminology and related notions (see [1, 3]). All locally solid vector lattices in
this note are assumed to be Hausdorff.

2. Main Result

We introduce the notion of the locally solid AM -space; a variant of this notion has been
defined as the AM -property in [2]; first, let us recall the AM -property.

Suppose X is a locally solid vector lattice. We say that X has the AM -property provided
that for every bounded set B ⊆ X, B∨ is also bounded with the same scalars; namely, given
a zero neighborhood V and any positive scalar α with B ⊆ αV , we have B∨ ⊆ αV . Note that
by B∨, we mean the set of all finite suprema of elements of B.

That definition has a gap as follows. Let X be R
2 with the sup norm. Take B =

{(1, 1), (
√
2, 0)} and V = {(x, y) : x2 + y2 6 1}. Note that V is a neighbourhood of 0.

Then B is contained in
√
2V , but B∨ is not.

On the other hand, by [3, Theorem 2.28] due to Fremlin, the linear topology of every
locally solid vector lattice has been generated by a family of the Riesz pseudonorms. So,
we can define a locally solid AM -space as follows. A version of the following definition was
originally defined at first in [4].

Definition 1. A locally solid AM -space is a locally solid space X together with a family
(ρi)i∈I of the Riesz pseudonorms which generate the topology of X and, in addition, satisfy
the following property:

ρi(x ∨ y) = ρi(x) ∨ ρi(y)

for each i ∈ I and for each x, y ∈ X+.

This definition modifies the gap in definition of the AM -property considered in [2]. Now,
we restate the following useful fact which is proved initially in [5, Lemma 3] while we employed
the AM -property instead of the locally solid AM -space.

Lemma 1. Suppose X is a locally solid AM -space with a family (ρi)i∈I of the Riesz pse-

udonorms, which generate the topology of X and U is an arbitrary solid zero neighborhood

in X. Then, for each m ∈ N, U ∨ . . . ∨ U = U , in which U is appeared m-times.

⊳ Without loss of generality, we may assume that

U = {x ∈ X, ρik(x) < εk : 1 6 k 6 n}

in which {i1, . . . , in} ⊆ I and {ε1, . . . , εn} ⊆ R+. It is obvious that U ⊆ U ∨ . . . ∨ U . For the
other direction, assume that x1, . . . , xm ∈ U+. For each 1 6 k 6 n, we have ρk(x1,∨ . . .∨xm) =
ρk(x1) ∨ . . . ∨ ρk(xm) < εk. This shows that U ∨ . . . ∨ U ⊆ U , as claimed. ⊲

Moreover, we have the following useful inequality in the Archimedean vector lattices.
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Lemma 2. Suppose E is a vector lattice. Then for x1, . . . , xn and y1, . . . , yn in E, the

following inequality holds

x1 ∨ . . . ∨ xn − y1 ∨ . . . ∨ yn 6 (x1 − y1) ∨ . . . ∨ (xn − yn).

⊳ We proceed the proof by induction. For n = 2, we have

x1 ∨ x2 − y1 ∨ y2 = (x1 − (y1 ∨ y2)) ∨ (x2 − (y1 ∨ y2))

= (x1 + ((−y1) ∧ (−y2))) ∨ (x2 + ((−y1) ∧ (−y2)))

= ((x1 − y1) ∧ (x1 − y2)) ∨ ((x2 − y1) ∧ (x2 − y2)) 6 (x1 − y1) ∨ (x2 − y2).

Now, suppose for n = k, the statement is valid. We need prove it for n = k + 1. By using
validness of the result for n = 2 and n = k, we have

x1 ∨ . . . ∨ xk ∨ xk+1 − y1 ∨ . . . ∨ yk ∨ yk+1

6 ((x1 ∨ . . . ∨ xk)− (y1 ∨ . . . ∨ yk)) ∨ (xk+1 − yk+1)

6 (x1 − y1) ∨ . . . ∨ (xk − yk) ∨ (xk+1 − yk+1). ⊲

Recall that a subset B of a topological vector space X is said to be totally bounded, if
for each arbitrary zero neighborhood V ⊆ X there is a finite set F such that B ⊆ F + V ; for
more information, see [1]. Another proof of the following result with a different technique has
been obtained in [6, Corollary 4.3.5].

Lemma 3. Suppose X is a topologically complete locally solid AM -space. If B ⊆ X is

totally bounded, then so is B∨. In particular, supB exists in X and supB ∈ B∨.

⊳ Choose arbitrary solid zero neighborhood U ⊆ X. By the assumption, there exists a
finite set F ⊆ X such that B ⊆ F + U . Assume that F = {z1, . . . , zm}. We claim that
B∨ ⊆ F∨ + U ; note that F∨, the set of all finite suprema of elements of F , is clearly finite.
Given any x1, . . . , xn ∈ B. There are some z1, . . . , zn (possibly with the repetition), such that
xi − zi ∈ U for all i = 1, . . . , n. Therefore, by using Lemma 2 and Lemma 1, we have

x1 ∨ . . . ∨ xn − z1 ∨ . . . ∨ zn 6 (−z1 + x1) ∨ . . . ∨ (−zn + xn) ∈ U ∨ . . . ∨ U = U.

Since U is solid, similarly, we have

z1 ∨ . . . ∨ zn − x1 ∨ . . . ∨ xn 6 (z1 − x1) ∨ . . . ∨ (zn − xn) ∈ U ∨ . . . ∨ U = U.

This means that (x1 ∨ . . . ∨ xn)− (z1 ∨ . . . ∨ zn) ∈ U so that x1 ∨ . . . ∨ xn ∈ F∨ + U .
Now, assume that D is the set of all finite subsets of B directed by the inclusion ⊆. For

each α ∈ D, put gα = supα. Observe that {gα} ⊆ B∨ satisfies gα ↑. By compactness of B∨,
there exists a subnet of (gα) that converges to some g ∈ B∨. Therefore, supB = supB∨ =
sup{gα} = g. ⊲

Now, we are able to consider a version of the Krengle’s theorem [1, Theorem 5.7] for
each class of compact operators between locally solid vector lattices. First, we recall some
preliminaries which are needed in the sequel.

Suppose X and Y are locally solid vector lattices and T : X → Y is a linear operator. T is
called nb-bounded, if there is a zero neighborhood U ⊆ X, such that T (U) is also bounded
in Y ; T is said to be bb-bounded, if it maps bounded sets into bounded sets.

Moreover, a linear operator T : X → Y is said to be nb-compact provided that there is
a zero neighborhood U ⊆ X, such that T (U) is compact in Y ; T is bb-compact if for every



A Krengel Type Theorem 79

bounded set B ⊆ X, T (B) is compact in Y . It is obvious that every nb-compact operator is
nb-bounded and every bb-compact operator in bb-bounded. These classes of operators enjoy
some topological and lattice structures; for a detailed exposition as well as related notions
about bounded and compact operators see [2, 7, 8].

Krengel has proved that when the range of a compact operator T between the Banach
lattices is an AM -space, then the modulus of T exists and is also compact (see [1, Theorem
5.7]). In the following, we prove this remarkable result for nb-compact operators as well as for
bb-compact operators, when the range space is a locally solid AM -space.

Theorem 1. Suppose X is a locally solid vector lattice, Y is a topologically complete

locally solid AM -space and T : X → Y is a bb-compact operator. Then the modulus of T

exists and is also bb-compact.

⊳ Fix a bounded set B ⊆ X such that T (B) is totally bounded in Y ; by replacing B with
Sol(B), if necessary, we may assume that B is solid. Observe that for each x ∈ B+, T [−x, x]
is totally bounded in Y so that by Lemma 3, the supremum |T |(x) = sup{|Ty| : |y| 6 x} =
supT [−x, x] exists in Y . Thus, by [1, Theorem 1.14], the modulus of T exists. According to

Lemma 3, T (B)∨ is also compact and |T |(x) ∈ T (B)∨. Therefore, |T |(B+) ⊆ T (B)∨. Since
B ⊆ B+ −B+, we have the desired result. ⊲

Corollary 1. Suppose X is a locally solid vector lattice, Y is a topologically complete

locally solid AM -space and T : X → Y is an nb-compact operator. Then the modulus of T

exists and is also nb-compact.

⊳ Observe that every nb-compact operator is bb-compact. Therefore, by Theorem 1,
the modulus of T exists. We need to show that it is also nb-compact. There exists a zero
neighborhood U ⊆ X, such that T (U) is totally bounded in Y . Note that according to

Lemma 3, T (U)∨ is also compact and |T |(x) ∈ T (U)∨. Therefore, |T |(U+) ⊆ T (U)∨. Since
U ⊆ U+ − U+, the proof would be complete. ⊲
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Аннотация. Предположим, что X и Y — локально плотные векторные решетки. Линейный опе-
ратор T : X → Y называется nb-компактным, если существует нулевая окрестность U ⊆ X такая, что
оператор T (U) компактен в Y . Оператор T bb-компактен, если для любого ограниченного множества
B ⊆ X T (B) компактно. Эти понятия далеко не равнозначны, вообще говоря. В этой статье мы вводим
понятие локально плотного AM -пространства как расширения для AM -пространств в банаховых решет-
ках. С помощью этого понятия устанавливается вариант известной теоремы Кренгеля для различных
типов компактных операторов между локально плотными векторными решетками. Эта теорема распро-
страняется [1, Теорема 5.7] (установленную для компактных операторов между банаховыми решетками)
на различные классы компактных операторов между локально телесными векторными решетками.

Ключевые слова: компактный оператор, теорема Кренгеля, локально плотное AM -пространство.
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