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Abstract. The idea of time scales calculus’ theory was initiated and introduced by Hilger (1988) in
his PhD thesis order to unify discret and continuous analysis and to expend the discrete and continous
theories to cases “in between”. Since then, mathematical research in this field has exceeded more than
1000 publications and a lot of applications in the fields of science, i.e., operations research, economics,
physics, engineering, statistics, finance and biology. Ostrowski proved an inequality to estimate the absolute
deviation of a differentiable function from its integral mean. This result was obtained by applying the
Montgomery identity. In the present paper we derive a generalization of the Montgomery identity to the
various time scale versions such as discrete case, continuous case and the case of quantum calculus, by
obtaining this generalization of Montgomery identity we would prove our results about the generalization
of the Ostrowski inequalities (without weighted case) to the several time scales such as discrete case,
continuous case and the case of quantum calculus and recapture the several published results of different
authors of various papers and thus unify corresponding discrete version and continuous version. Similarly
we would also derive our results about the generalization of the Ostrowski inequalities (weighted case) to
the different time scales such as discrete case and continuous case and recapture the different published
results of several authors of various papers and thus unify corresponding discrete version and continuous
version. Moreover, we would use our obtained results (without weighted case) to the case of quantum
calculus.
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1. Introduction

Ostrowski proved an inequality to estimate the absolute deviation of a differentiable
function from its integral mean. The below inequality is called the Ostrowski inequality which
is extracted from [1]. For more study about the Ostrowski inequality, we refer to [2-7].
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holds and this result had obtained by applying the Montgomery identity [8]. These properties
would be derived for general time scales, which recapture discrete, continuous and many other
cases. The pattern of current paper is consist of four sections. In the Section 1 and 2, we would
present some preliminaries about time scales that are needed in the remainder of the paper. In
the Section 3, we would get time scales versions of the generalized Montgomery identity and
of the generalized Ostrowski inequality. While in the section 4 we would give several weighted
time scales of the Ostrowski inequality. Throughout, we use our established results for the
especial cases of discrete, continuous and quantum time scale. In the Section 5, we would give
conclusion of the paper.

2. Time Scales Essentials

The idea of time scales calculus’ theory was initiated and introduced by Hilger (1988) in his
PhD thesis [9] (supervized by Aulbach) in order to unify discret and continuous analysis and
to expend the discrete and continous theories to cases “in between”. Since then, mathematical
research in this field has exceeded more than 1000 publications and a lot of applications
in the fields of science, i. e., operations research, economics, physics, engineering, statistics,
finance and biology [10]. Even the time scale calculus theory may be used in most of the
branches of science in which dynamic processes are explained by discrete-time/continuous-
time models. We prefer the researcher to the book [11| written by Bohner and Peterson about
the introduction to the singled variable time scale calculus and its implementations.

In 2004, Bohner introduced the variations’ calculus on time scale, he used the delta
derivative and delta integral [12]|, and it has since then been further developed by several
different authors in several different publications (see [13-18]). Many classical results of
calculus of variations as necessary or sufficient conditions of optimality have been generalised
to arbitrary time scale.

DEFINITION 2.1. A time scale is an arbitrary nonempty closed subset of the real numbers.
The most important examples of time scales are R, Z and ¢ := {qZM € No}.

DEFINITION 2.2. If T is a time scale, then we define the forward jump operator o : T — T
by o(0) := inf{r € T|r > 6} for all § € T, the backward jump operator p : T — T by
p(0) = sup{r € T|r < 0} for all # € T, and the graininess function u : T — [0,00) by
() :=o(0)—46 for all § € T. Furthermore for a function g : T — R, we define ¢g?(0) = g(c())
for all @ € T and g”(0) = g(p(0)) for all # € T. In this definition we use inf @ =sup T (i. e.,
p(0) = 6 if 0 is the maximum of T) and sup@ = inf T (i. e., p(f) = 0 if 6 is the minimum
of T).

These definitions allow us to characterize every point in a time scale as following
classifcation of points:

() 0 right-scattered = 0 < o (6),

(79) 6 right-dense = 0 = o (6),

(i1) O left-scattered = p(6) < 6,

(1v) 0 left-dense = p(0) = 0,

(v) 6 isolated = p(#) < 0 < o(0),

(vi) 0 dense = p(0) =0 = o ().
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DEFINITION 2.3. A function ¢ : T — R is called rd-continuous (denoted by C,q) if it is

continuous at right-dense points of T and its left-sided limits exist (finite) at left-dense points
of T.

Theorem 2.1 (existence of antiderivatives). Let g be rd-continuous. Then g has an anti-
derivative G satisfying G® = g.

< See Theorem 1.74 of paper [11]. >

DEFINITION 2.4. If g is rd-continuous and 0y € T, then we define the integral

0
GO)= [ g(s)As for 6€T. (2.1)
/

Therefore for g € C,4 we have f,fg(s)As = G({) — G(k), where G® = g.
Theorem 2.2. Let g, h be rd-continuous, «,{¢,l € T and «, 5 € R. Then
(i) Jlog(6) + BR(O)A6 = a [ g(B)A6 + B [ h(0) A,

(ii) [19(0)A0 = — [} g(6) A0,

(iid) [Lg(6)A60 = [ g(6)A6 + [ g(6)A6,

(iv) [1g(0)h>(0)A0 = (gh)(€) — (gh)(r) — [ g™ (0)h(a()) A0,

(v) J; 9(6)A0 = 0.

< See Theorem 1.77 of paper [11]. >

DEFINITION 2.5. Let he, f.: T? = R, ¢ € Ny, be defined by

ho(0,7) = fo(0,7)=1 (V7,0 €T)

and then recursively by
9 9
het1(0,7) = /hc(a(s),T)As (V7,0 € T) and for1(0,7)= /fc(s,T)As (V71,0 €T).

Theorem 2.3 (Holder’s inequality). Let x,¢ € T and g,h : [k,¢] = R be rd-continuous.

Then
14 l 1 0 1
/|g(9)h(9)|A9 < </|g(9)|pA9) (/‘h(@)‘qA9> , (2.2)

Wherel<pand%—i—%:1.
< See Theorem 6.13 of [11]. >

In 2008, Bohner et. al. proved the Ostrowski inequalities on time scales and they
obtained unified and extended results to the literature and they also gave results to the
quantum calculus case. In the current paper, we would obtain generalization of the Ostrowski
inequalities on time scales and recapture the results of [19] for discrete and continuous versions
and also recapture some results of papers [1, 8, 11, 20-22]. Moreover, we will use our parametric
results to the case of quantum calculus.
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3. Generalization of the Ostrowski Inequality on Time Scales

To prove the our main Theorem 3.1, we require the below generalized Montgomery identity.

Lemma 3.1 (the generalized Montgomery identity). Let x,¢, 7,0 € T, K < £ and g :
[k, ] — R be differentiable and parameter \ € [0, 1]. Then

0 l
(1= Ngl6)+5 (60 +9(0) = [ ar+ — [po.ntman @
where p
T — <I€ + A ; K) T<0

p(0,7) =

< Applying Theorem 2.2 (iv) we have
0

0
/(T— <H+)\€_TK>>9A(T)AT: (0— </<;+)\€;K)>g(9)+)\€;f€g(n) —/g"(@)AT.

K

4
[ (= (e=255)) s> mar =~ (o (¢~ 5;“))909)“5;%(@)—O/g“w)m-

0

Therefore
1 / 1 / 1 / 1
= [ oars = [p6.n08mar = = [ @A+ |- 0 - Ngl6)
0
A g0+ 9(0) — [ D)AT] = (1= N)gl6) + 5 (600 + 9(0),

e., (3.1) holds. >
REMARK 3.1. If we put A =0 in Lemma 3.1, then we recapture Lemma 3.1 of [19].

If we implement the generalized Montgomery identity to several time scales, we obtain
some well-known and new results.

DISCRETE CASE:
Corollary 3.1. We suppose T =Z. Let k =0, { =n, 7 =b, 0 = a and g(c) = y.. Then

A
(1= Nya + 5 (o + ) = Zyzﬂr ZpabAyb,
where
p(a70)_07
An
b—7, 0<b<a—1,
p(aab): )\
b—n(1—§>, a<b<n-1
as we just require 1l <a <n,0<b<<n—1

REMARK 3.2. If we put A = 0 in Corollary 3.1, then we recapture Corollary 3.2 of
paper [19] and Theorem 2.1 of paper [20].



102 Khan, A. R., Mehmood, F. and Shaikh, M. A.

CONTINUOUS CASE:
Corollary 3.2. We let T = R. Then

(1= N)g(60) + 5 (9l) + 9(0) = = [ a(rydr+ - [ p(6.1)g(7) ar

REMARK 3.3. If we put A = 0 in Corollary 3.2, then we recapture the Montgomery identity
in the continuous case which may be seen in [8, p. 565| and Theorem 2.1 of paper [20].

QUANTUM CALCULUS CASE:
Corollary 3.3. We let T = ¢, ¢ > 1, k = ¢™, £ = ¢" and T = ¢ with m < n. Then

n—1 n—1
A 1 1
A=Ng(®)+3 (9a")+9(d™) = 7= > g™ t o > [a(a ™) —9(q)]p(6, %),
where . .
¢ — (qm+>\q —2q ) "< ¢ <9,

p(0,q°) =

. n (4" —q" ¢ m
¢“—1{q"—=A 5 . 0<q <"

REMARK 3.4. If we put A = 0 in Corollary 3.3, then we recapture Corollary 3.4 of [19].

Theorem 3.1 (the generalized Ostrowski inequality). Let x,¢,7,60 € T, k < ¢ and
g : [k, ] = R be differentiable and parameter A € [0,1]. Then

M
{— K

<

(1=X)g(0) + % (9(r) +9(0)) — (f2(0, %) + f2(0,0)),  (3.2)

¢
1
g / 97 (T)AT
where

M = sup !gA(G)‘.
K<O<L

This inequality is sharp in the sense that the right-hand side of (3.2) cannot be replaced by
a smaller one.

< Using Lemma 3.1 with p(6, 7), we have

¢
(1= N)g(6)+ 5 (600) + 9(0) - 7 [ 57(1)A7

L
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REMARK 3.5. If we put A = 0 in Theorem 3.1, then we recapture Theorem 3.5 of [19] and
which is stated in the following as:

Corollary 3.4. Suppose the assumptions of Theorem 3.1 is true. Then

J4
ﬁ /p(ﬂ, 7')gA (T)AT

K

o(6) - 7= [ (A

K

0 L 0 L

< €¥R</|T_K|AT+/|T—MT> -2 (/(T_K)AH/M—T)AT) (33)
0

K K %

M
- (f2(0,K) + f2(0,0)).

—K

Note that, since p(0, k) = 0, the smallest value attaining the supremum in M is greater
than k. To prove the sharpness of inequality (3.3), let g(0) = 0, k = Ty, £ = Ty and 6 = T».
It follows that g®(f) = 1 and M = 1. Beginning with the left-hand side of (3.2), we have

1 l 1 T>
0) — (T)AT| = |Th — A
96) - = [ 77| = T - = [a(nar
K T
TQ T2
1
= TQ_TQ—Tl /(U(T)+T)AT—/TAT
T1 Tl
Ts T> Ts
1 oA 1
:TQ—Tz_T1 /(7') AT—/TAT :'—T1+T2_T1/TAT.
Ty T T
Beginning with the right-hand side of (3.2), we have
p Ty
o (RO + £20.0) = 7= | [(r=mar- [-ma
/—r 2V, Kk 2V, _TQ—Tl T 1)RAT T 2)AT
Ty Ty
p Ts
1 1
= ~ T Ty + T} AT | =-T Ar.
TQ—T1< 112 + 1+/T 7’) 1+T2_T1/7'7'
Ty T1

Therefore in this particular case

L
9) ~ 7 [ @] = 2 (100) + £20,0)
and by (3.2) also
l
06) = = [ 57 (AT < T (alb) + ul6,0).

So the sharpness of the Ostrowski inequality is shown.
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The following are the different cases of the generalized Ostrowski inequality with A = 0.

DISCRETE CASE:

Corollary 3.5. We suppose T =Z. Let k =0, { =n, 7 =b, 0 = a and g(c) = y.. Then
1 ¢ M

Ya — E ; Y| = ; [

a

5 1 (3.4)

n+1‘2+n2—1]

where

M= max |Ay,l.
1<a<n—1

This is the discrete Ostrowski inequality (see Theorem 3.1 of [20]), where the constant 1/4 in
the right-hand side of (3.4) is the best possible in the sense that it cannot be replaced by a
smaller one.

CONTINUOUS CASE:
Corollary 3.6. We suppose T = R. Then

where

M = sup |g'(9)‘.
K<O<L

This is the Ostrowski inequality in the continuous case [1], where again the constant 1/4
in the right-hand side is the best possible.

QUANTUM CALCULUS CASE:
Corollary 3.7. We suppose T = ¢, ¢ > 1, k = ¢™ and { = ¢" with m < n. Then

2 9_%(qm+q”) 2
1+¢q 2

— (5% (¢ + ¢)% + (21 + q) — 2)(¢*™ + qZ"))]
4 b

M
qn_qm

N

where 0 0
— s 9(q0) — 9(0)
qm<O<q™ (C] - 1)9
and 1/4 in the right-hand side is the best possible.

Corollary 3.8. If put A = 1 in Theorem 3.1. Then we obtain following average trapezoid
type inequality on time scale

)

M
{— &K

(f2(0, %) + fa(0,0)), (3.5)

where
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4. The Weighted Case

The below weighted Ostrowski inequality with parameter on time scale holds.

Theorem 4.1. Suppose the assumptions of Theorem 3.1 is true and £ € T and q € C,q.
Then

( ¢ 1 Y4 1
A+(1- A)(/ ‘g(@)‘pAT> (/ (q"(T))qAT>
K Z K % Z 6 1 1
< + </ |g‘7(7')|pAT> ( (qU(T))qAT> , 1_9+ p =1, p>1, (4.2)
A+ iugz q° (7)[ha(k, 0) + ha(,0)],
LAD—olo) |y _y - SteD 0lo|
where

[4 ¢
<A+ /q"(Tﬂ(l —Ng(0) — g% (T)| AT + /qa(7)|(1 ~N)g(0) — ¢°(7)| AT
0

K

and therefore (4.1) is shown.

The first part of (4.2) can be done easily by applying Holder’s inequality. By factoring
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SUP,<r<¢q°(T), we have

0

L
A+ [ @10 -290) - @lar+ [0l -296) - g (0)|a7
0

K

)\)g(ﬂ)) AT+

K<T<l

<A+ sup ¢ < ((1 —Ag(0) — g”(T))AT)

(T))AT +

— S —

=A+ sup ¢° <

r<T<L

(1 =N)g(0) — g”(T)MT)

e
ofoe

= A+ sup ¢7(7)[ha(r,0) +

r<T<L

> <

2(659)]

and therefore the 2nd part of (4.2) holds. Finally for deriving the 3rd inequality, we implement
the fact that

sup {la(a(r) = (1= N)g(0)]} = masx {g(a(6)) = (1 = N (0). (1 = Ng(0) — g(c ()}
o) o) |1 _ 335 — St + s(e10)|

Thus (4.2) is shown. >

REMARK 4.1. If we put ¢°(1) = 7 in Theorem 4.1 then obtain the result without
weights.

REMARK 4.2. If we put ¢7(7) = ﬁ and A = 0 in Theorem 4.1 then we recapture
the Theorem 3.1 of [19].

REMARK 4.3. Theorem 4.1 with A = 0 states a similar result as shown in Theorem 3.1
of [21], if we consider the normalized isotonic functional B(g f q°( T)AT.

REMARK 4.4. The second inequality of (4.2) with A = 0 is Comparable to the achievement
in Theorem 3.1 of [22] for the continuous case (see Corollary 3.3 of [22]).

DiSCRETE CASE:
Corollary 4.1. We suppose T =Z. Let k =0, =n, 7 =b, 0 = a, { = ¢ and g(c) = ye.
Then Y "' 1 qo =1, 0 < qq, and

A+ (1= quyb

n n
N alval + > aslwl
b=1 b=1

1 1 1
n ; n q n P n q
<> (£4) <> (£4)" teimnoon

b=1

(

N

A+ maxp—y,__pnq(b) ( > yb> ,
b=1

)

er‘(l_)\)ya_yoJrTyn

where A = 3(yo + yn).

REMARK 4.5. If we put A = 0 in Corollary 4.1 then we recapture the Theorem 4.1 of [20]
and Corollary 4.3 of [19].
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CONTINUOUS CASE:

Corollary 4.2. We suppose T = R. Then flf q(r)dr =1, 0 < ¢(7) and

L
A+ (1= 29(0) - [ ar)glr)dr

3=

/AN
+
P
G
_6
QL
\]
N——

where
l

A =2 (g(w) +9(0)), [awiar=1. 4 =0

K

REMARK 4.6. If we put A = 0 in Corollary 4.2 then we recapture the Corollary 4.4 of [19].
Corollary 4.3. If we put A = 1 in Theorem 3.1. Then we obtain following average

trapezoid type inequality with weights on time scale

l
:ggﬁiiﬁgg+l/q”ﬁﬂdﬂfﬂAT

1 ¢ 1
ﬂﬁgﬂ9+</vaAﬂ (ﬂfﬁWAﬂ, PR

K

4
———%é+wpfm</foﬁmO,

N
2
2
+
=N

2 K<T<L
K

Another interesting conclusion of Theorem 4.1 with ¢7 (1) = ﬁ and A = 0 is the following

corollary.
Corollary 4.4. Suppose k,£,7,0 € T, k < £ and g is differentiable. Then

l

1
7(rAT| <
_K/g(T)T

/XI,{ (f2(0, k) + f2(6,0)), (4.3)
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where

M= sup |gA(9)|.
o(k)<O<L

Note that this was shown in several ways in Theorem 3.1 In inequality (4.3) we implement
the fact that the functions hs and fy satisfy ha(7,0) = (=1)2f2(0,7), VO € T, 7 € T (see
Theorem 1.112 of [11]).

REMARK 4.7. Moreover note that there is a small difference of (4.2) in comparison to
Theorem 3.1, as we have supg(,)<g<, instead of sup, g,. This is just important if « is right-
dense, i.e., (k) = k. But in those cases the inequality does not change and is still sharp.
Furthermore in the proof of Theorem 3.1 we could have picked sup, <y, as explained before.

5. Conclusion

In this paper, the generalized Ostrowski inequalities (with weights and without weights)
are proved on time scales and thus our results unified and extended corresponding to
discrete and continuous versions of previously proved results of different researchers in various
papers [1, 8, 11, 19-22]. Moreover, we have used our obtained results to the quantum calculus
case.
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OBOBIIEHVE HEPABEHCTB OCTPOBCKOI'O HA BPEMEHHBIX ITTKAJIAX

Kxan A. P.1, Mexmyn ®@.23, [Tlanx M. A4

! Vuusepcnrer Kapaun, [Takucran, 75270, Kapauu;
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3 Miskenepuo-rexuoornyeckuil yuusepcurer JlaBya,
[Takucran, 74800, Kapaun, jqopora Heio M. A. Jlxunna,;

4 Tocymapcrsennbnii nayunbii komtemx Hadu Bar 3. M.,
ITakucran, 74400, Kapauu, Cagnap

E-mail: chasifrk@uok.edu.pk, faraz.mehmood@duet.edu.pk,
m.awaisshaikh2014@gmail.com

Annoraums: Unes Teopunm MCYMC/IEHWS BPEMEHHBIX KA ObLia WHMIMHpOBaHa Xuabrepom (1988) B
€ro JIOKTOPCKOM JMCCEPTAIUU C I[eJIbI0 YHUMDUKAINKA JUCKPETHOIO M HENPEPLIBHOIO aHAJIU3a U IIPUMEHUTH
JIMCKPETHYIO U KOHTHMHYAJIbHYIO TEOPUU K CIydasM <«IPOMEKyTOdHbIM». C TexX 1mop MareMaTUIecKue HCCJIe-
noBaHus B 9TOi obsractu mopoxuau 6osmee 1000 myOGaukammii ¢ TPUIOKEHUSIMU B PA3JIAIHBIX HAYKaX, TAKIX
KaK HCCJIe/IOBAHME OIlEepaIliil, 9KOHOMUKA, (PU3MKa, TEXHUKA, CTATUCTHAKA, duHAHCHI, Ouosiorus. OcTpoBCcKuit
JOKa3aJ HEPABEHCTBO JIJIsI OIEHKH aOCOTIOTHOTO OTKJIOHEeHUS AuddepeHnnpyeMoil (yHKINI OT ee MHTETPAIb-
HOT'O CPEJHErO. DTOT Pe3yJsbraT ObLI MOJIyYeH C IMOMONIbI0 ToxKiaectBa Monrtromepu. B Hacrosimieit crarbe
MBI BBIBOJIM 000011eHNe ToXK 1ecTBa MOHTrOMepH Jijisi pa3jInYHbIX BPEMEHHBIX IIKaJI, TAKUX KAaK JUCKPETHBIA
cirydai, HeIpePBbIBHBIN CIIy4ail U CIydail KBAHTOBOro ucuucjiaerus. [losxyaus sTo 06o6menne ToxecrBa MoHT-
rOMEpH, MBI JIOKAXKEM HAIIN Pe3ysIbTaThl 06 0606mennn HepaserncTBa OCTpoBCKOro (63 BECOBOTO Cirydast) it
VIIOMSIHYTBIX BPEMEHHBIX IIKaJl. TakuMm ob6pa3oM, yJaercs IOBTOPUTH HECKOJILKO paHee OIyOJIMKOBAHHBIX pe-
3yJIBTATOB PAa3HBIX ABTOPOB B PA3INYHBIX CTATHAX U YHUPUIMPOBATH COOTBETCTBYIONIYIO TUCKPETHYIO BEPCHUIO
U HEeIPepbIBHYIO Bepcur. TOYHO TaK »Ke Mbl TAKKe [TOJLy YUM HAIIHU Pe3yIbTarThbl 00 0600mennu HepaseHcTs Oct-
POBCKOrO (BEcoBOii Cily4aii) Ha pa3Hble BpEMeHHbIE IIIKAJIbl, IIOBTOPUM paHee OIlyOJMKOBAHHBIE PE3YJIbTATH U,
TEM CaMBbIM, YHUMDUIIUPYEM COOTBETCTBYIOIILYIO JUCKPETHYIO BEPCHUIO U HEMIPEPBIBHYIO Bepcuio. bosee Toro, Mut
OPUMEHUM IOJIyI€HHBbIE HAMY Pe3yJIbTaThl (6e3 BECOBOro CiIydas) K CIydal0 KBAHTOBOIO MCUUCJICHHUS.

Kurouessle ciioBa: HepasernctBo OcTpoBckoro, HepaBeHCTBO ['é1biepa, Toxk 1ectBo MonTroMepu, mKasb
BPEMEHHU, KBAHTOBOE MCUYUCIIEHUE.
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