Abstract: In this article, using a new calculus defined on fractal subsets of the set of real numbers, a Sturm-Lioville type problem is discussed, namely the fractal Sturm-Liouville problem. The existence and uniqueness theorem has been proved for such equations. In this context, the historical development of the subject is discussed in the introduction. In Section 2, the basic concepts of \(F^{\alpha}\)-calculus defined on fractal subsets of real numbers are given, i.e., \(F^{\alpha}\)-continuity, \(F^{\alpha}\)-derivative and fractal integral definitions are given and some theorems to be used in the article are given. In Section 3, the existence and uniqueness of the solutions for the fractal Sturm-Liouville problem are obtained by using the successive approximations method. Thus, the well-known existence and uniqueness problem for Sturm-Liouville equations in ordinary calculus is handled on the fractal calculus axis, and the existing results are generalized.

Keywords: fractal Sturm-Liouville problems, existence problems

For citation: Allahverdiev, B. P. and Tuna, H. Existence Theorem for a Fractal Sturm-Liouville Problem, Vladikavkaz Math. J., 2024, vol. 26, no. 1, pp. 27-35.
DOI 10.46698/h4206-1961-4981-h

1. Parvate, A. and Gangal, A. D. Calculus on Fractal Subsets of Real
Line - I: Formulation, Fractals, 2009, vol. 17, no. 1, pp. 53-81. DOI: 10.1142/S0218348X09004181.

2. Cetinkaya, F. A. and Golmankaneh, A. K. General Characteristics
of a Fractal Sturm-Liouville Problem, Turkish Journal of Mathematics, 2021, vol. 45, no. 4,
pp. 1835-1846. DOI: 10.3906/mat-2101-38.

3. Golmankhaneh, A. K. Fractal Calculus and its Applications: \(F^{\alpha}\)-Calculus, World Scientific Publ. Co. Pte. Ltd., 2022. DOI: 10.1142/12988.

4. Golmankhaneh, A. K. and Tunc, C. Stochastic Differential
Equations on Fractal Sets, Stochastics, 2020, vol. 92, no. 8, pp. 1244-1260.
DOI: 10.1080/17442508.2019.1697268.

5. Golmankhaneh, A. K. and Tunc, C. Sumudu Transform in Fractal
Calculus, Applied Mathematics and Computation, 2019, vol. 350, pp. 386-401. DOI: 10.1016/j.amc.2019.01.

6. Golmankhaneh, A. K. and Tunc, C. On the Lipschitz Condition in
the Fractal Calculus, Chaos, Solitons & Fractals, 2017, vol. 95, pp. 140-147. DOI: 10.1016/j.chaos.2016.12.001.

7. Parvate, A. and Gangal, A. D. Calculus on Fractal Subsets of Real
Line - I: Conjugacy with Ordinary Calculus, Fractals, 2011, vol. 19, no. 3, pp. 271-290.
DOI: 10.1142/S0218348X11005440.

8. Kolwankar, K. M. and Gangal, A. D. Fractional Differentiability of
Nowhere Differentiable Functions and Dimensions, 1996, Chaos, vol. 6, no. 4, pp. 505-513.
DOI: 10.1063/1.166197.

9. Kolwankar, K. M. and Gangal, A. D. Holder Exponents of Irregular
Signals and Local Fractional Derivatives, Pramana - Journal of Physics, 1997, vol. 48, pp. 49-68.
DOI: 10.1007/BF02845622.

10. Kolwankar, K. M. and Gangal, A. D. Local Fractional Fokker-Planck
Equation, Physical Review Letters, 1998, vol. 80, no. 2, pp. 214-217. DOI: 10.1103/PhysRevLett.80.214.

11. Kolwankar, K. M. and Gangal, A. D. Local Fractional Derivatives and
Fractal Functions of Several Variables, Mathematical Physics, 1998, arXiv:physics/9801010. DOI: 10.48550/arXiv.physics/9801010.

12. Aydemir, K. and Mukhtarov, O. Sh. A New Type Sturm-Liouville
Problem with an Abstract Linear Operator Contained in the Equation, Quaestiones Mathematicae,
2022, vol. 45, no. 12, pp. 1931-1948. DOI: 10.2989/16073606.2021.1979681.

13. Aydemir, K. and Mukhtarov, O. Sh. Qualitative Analysis of
Eigenvalues and Eigenfunctions of one Boundary Value-Transmission Problem,
Boundary Value Problems, 2016, article no. 82. DOI: 10.1186/s13661-016-0589-4.

14. Levitan, B. M. and Sargsjan, I. S. Sturm-Liouville and Dirac
Operators, Mathematics and its Applications (Soviet Series), Kluwer Academic
Publishers Group, Dordrecht, 1991.

15. Olgar, H. and Mukhtarov, O. Sh. Weak Eigenfunctions of
Two-Interval Sturm-Liouville Problems Together with Interaction Conditions,
Journal of Mathematical Physics, 2017, vol. 58, no. 4, 042201. DOI: 10.1063/1.4979615.

16. Ozkan, A. S. and Adalar, I. Inverse Nodal Problems for
Sturm-Liouville Equation with Nonlocal Boundary Conditions, Journal of Mathematical
Analysis and Applications, 2023, vol. 520, no. 1, 126904. DOI: 10.1016/j.jmaa.2022.126904.

17. Koyunbakan, H. Reconstruction of Potential in Discrete
Sturm-Liouville Problem, Qualitative Theory of Dynamical Systems, 2022, vol. 21, article no. 13. DOI: 10.1007/s12346-021-00548-9.

18. Karahan, D. and Mamedov, K. R. On a \(q\)-Boundary Value Problem
with Discontinuity Conditions, Bulletin of the South Ural State University,
Ser. Mathematics. Mechanics. Physics, 2021, vol. 13, no. 4, pp. 5-12. DOI: 10.14529/mmph210401.

19. Karahan, D. On a \(q\)-Analogue of the Sturm-Liouville Operator
with Discontinuity Conditions, Journal of Samara State Technical University,
Ser. Physical and Mathematical Sciences, 2022, vol. 26, no. 3, pp. 407-418. DOI: 10.14498/vsgtu1934.